
Progress towards high fidelity collisional-radiative
model surrogates for rapid in-situ evaluation

Nathan A. Garland
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544
ngarland@lanl.gov

Romit Maulik
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL 60439

Qi Tang
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

Xian-Zhu Tang
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

Prasanna Balaprakash
Argonne Leadership Computing Facility and
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL 60439

Abstract

The advancement of future fusion plasma transport modeling platforms relies on
having an accurate understanding of the composition and radiation properties of
the plasma. These quantities can be obtained from solving a collisional-radiative
(CR) model at each time step or iteration of a transport code. However, even
compact, approximate CR models can be computationally onerous to evaluate
and in-situ evaluation of these models within a larger plasma transport code leads
to a rigid bottleneck. As a way to bypass this bottleneck, we propose deploying
artificial neural network surrogates to allow rapid evaluation of the necessary
plasma quantities. In this work we explore the computational benefits of the
proposed method, and outline a data-driven adaptive sampling routine to allow
autonomous refined sampling of the parameter space in order to ensure a broad and
meaningful set of training data is assembled to train the network.

1 Introduction

Research and construction towards ITER is being performed across the world. ITER will be the
world’s largest tokamak, which is a device to magnetically confine a hot plasma in the shape of a
torus with the goal of demonstrating a path to viable fusion energy. Presently, the biggest threat to
ITER’s safe operation are plasma disruptions. A disruption is a sudden termination of the plasma,
and can lead to extreme heat deposition and relativistic electron beam impact on reactor walls. In
either case, the end result is predicted to be unacceptable hardware damage, costing exorbitant time
and financial resources. Presently, impurity injection is the reference ITER mitigation strategy, with
neon being a likely candidate for injection into the hydrogenic plasma [1].

Accurate modeling of fusion plasmas with added impurities is an indispensable resource to under-
standing the physics and mitigation plan of tokamak disruptions [2]. Given some impurity of atomic
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number, Z, and density, nI , added to a plasma of a fixed deuterium density, nD, and described by an
electron temperature, Te, the associated collision and radiative events described by atomic physics
sets the populations of the neutral atom and Z possible ion stages with density nj , where 0 ≤ j ≤ Z.
Further, knowing the radiation potential of the plasma due to the population of various excited states
within each ion stage is crucial understanding the ability of a hot plasma to radiatively cool.

To access the desired quantities, nj , and radiation potential, PRad, a collisional-radiative (CR) model
is used to solve for the populations of ions in various excited energy states. A CR model is a coupled
set of rate ordinary differential equations (ODEs), solved as a rate matrix problem, that describe
transitions in to, or out of, ionic excited state populations, nj,α, where the index j denotes ion stage,
and α denotes the excited state level. In the steady-state, which is a reasonable assumption for certain
fusion plasma regimes, the rate matrix problem is R(n)n = 0, where R is the rate matrix composed of
elements Rij describing gain and loss from element i to j, and n is the state vector of excited states of
ion populations, nj,α. Solution of this system can be computationally challenging when n is large or
R is near singular. Once n is known, the sum of radiation cooling rates due to each excited ion state
can then be computed by the CR model, and then passed back to the plasma transport model [3, 4, 5].

Ideally, one would solve a CR model at each time-step or iteration of a plasma transport code, however
the computational bottleneck created by this requirement is undesirable. Even relatively compact,
O(101 − 102), approximate CR models, such as that used in this present work [6, 7], can take up to
dozens of seconds to solve. While state-of-the-art, fine structure O(106 − 109) CR models can take
minutes or hours to obtain one solution [8, 9]. Presently, in order to obtain these quantities within
plasma transport codes the fusion community has resorted to greatly simplified models that limit
the fidelity of physics retained in the model [10]. In this study we seek an alternative approach to
allow rapid evaluation of necessary quantities in the form of a generalizable artificial neural network
(ANN) surrogate. In doing so, we hope to push forward the limits of fusion plasma modeling, aided
by machine learning, in order to facilitate greater understanding of the critical tokamak disruption
mitigation issue for ITER.

2 Surrogate modeling strategy

In the following section, we evaluate the construction of surrogate models for our CR dataset so
that dramatically inexpensive forward models may be obtained using an ANN. Notably, our goal
is to not just obtain a cheap surrogate but to also balance the offline cost of representative data set
generation for training this surrogate. This is obtained via an adaptive sampling explained below.
We use two surrogate models in this research: a low fidelity (LF) and high fidelity (HF) surrogate.
The two models differ in the ability to accurately represent the CR input-output relationship and are
used for two distinct purposes in our surrogate development campaign. These models are give by a
low-fidelity random forest regressor (RFR) [11], and a high fidelity ANN that may act as a universal
approximator [12] trained by backpropagation [13].

Firstly, the surrogate we seek to learn will provide a map of the input field of: electron
temperature, impurity density, and deuterium density, Te, nI , nD, to an output field of the
total radiative power loss and ion stage populations for deuterium and the added impurity,
PRad, n
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+Z where Z is the atomic number of the impurity of concern.

In this study we assume Z = 10 for injected neon impurity, which is the current strategy outlined
for ITER. Expansion to variable Z will be explored in future studies, but as the atomic physics
of each atom, even those adjacent to neon on the periodic table, can be significantly different we
limit ourselves to one atomic target initially. The input field quantities are limited to the domain of
1eV ≤ Te ≤ 1000 eV, 1013 cm−3 ≤ nI ≤ 1015 cm−3, and 1013 cm−3 ≤ nD ≤ 1015 cm−3.

The underlying mechanism of our adaptive sampling strategy uses the ensemble property of the
RFR wherein each tree in the forest may be queried for a prediction of a scalar metric, to estimate
prediction variances in the multidimensional parameter space. If the different trees in an RFR show a
wide range of predictions (i.e., there is widespread disagreement in the predictions of trees in a forest)
in some region of the finely sampled space, we run full-order CR evaluations in that region, append
this to our master training data set and retrain the RFR as well as the multi-layer perceptron (MLP).
This allows us to adaptively sample higher dimensional spaces which may be challenging to cover due
to the curse of dimensionality. To initialize this adaptive algorithm, a first (relatively coarse) sampling
of the input space is constructed to train our RFR following which the adaptive sampling is performed
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iteratively. The end of an adaptive sampling iteration is accompanied by a re-training of the MLP
surrogate on the expanded training data set. The validation performance of this MLP is recorded for
the purpose of a posteriori model selection. Note that the sampling at each iteration (and at the start
of the adaptive training data augmentation) utilizes the Latin Hypercube sampling (LHS) method for
experimental design. We note that a choice of scalar metric for the LF surrogate must be made in
order to guide resampling. In this research we employ two physically important quantities in this
role, one being the average charge state of the impurity ions Z̄ =

∑Z
j=0 jnj/

∑Z
j=0 nj where Z is

the atomic number of the impurity, and nj are ion populations of a charge j. The second scalar is the
total radiative power loss, Prad, which is a function computed by the forward CR model dependent
on the range of excited state populations.

The hyperparameters that need to be selected a-priori for this framework include the number of
samples required for the first training iteration, the number of new samples for each data set aug-
mentation, the total computational budget for training the surrogate and the traditional hyperpa-
rameters of the MLP (e.g., the learning rate, early stopping criterion, architecture) and the RFR
(the number of trees, maximum depth of the forest). Our sampling strategy is outlined in Algo-
rithm 1 where the hyperparameters of the associated components are as follows: Ninit = 50 initial
samples, Nresample = 0.1Ninit re-samples per data set augmentation iteration, and a budget of
Nbudget = 1950 samples to make 2000 samples the maximum possible. The MLP was chosen to
have two hidden layers, 50 neurons wide each, between the input and output layers of dimension
three and 14 respectively. The ReLU activation function was employed in this network. The learning
rate was fixed as 10−3 with the Adam algorithm [14] used for optimization. An early stopping criteria
was set to halt learning after 100 epoch of failing to reduce validation loss. Hyperparameters of the
RFR were chosen as 50 trees in the forest, with a maximum depth of eight. Stopping criteria for the
overall adaptive sampling framework was set to be when a validation R2 result of 0.95 or greater is
obtained.

Algorithm 1: Adaptive CR surrogate training sampling
Generate Ninit initial samples of forward CR model evaluation;
Train HF surrogate;
while Nsamples < Nbudget do

Train LF surrogate to map input field to scalar metric;
Evaluate fine sample space grid using LF surrogate. Sort by variance;
for i = 1 : Nsamples/10 do

Take input field of highest variance LF prediction. Generate new sample;
end
Train HF surrogate on expanded sample set. Evaluate surrogate metrics.;
if R2 > R2

goal then
Stop.

end
end

3 Experiments

As a point of reference for the performance of the adaptive sampling framework, an ANN surrogate
was simply trained on a fixed data set of size 3375, spanning a space of 15 × 15 × 15 samples
determined via LHS. The hyperparameters outlined in the previous Section were employed in training
this surrogate, and a test R2 of 0.999 was obtained against an unseen test set. To demonstrate the
ability of this ANN, from this unseen test set, a kernel density estimate plot showing the predicted
relationship between two output field quantities is shown in Figure 2. All assessments in this study
were conducted with Tensorflow 2.0.0 under Python 3.7.9 on a 2.9GHz Intel Core i9 CPU with 32GB
of RAM.

3.1 Adaptive sampling performance

Employing the network architectures and hyperparameter choices outlined in the previous section, we
performed analyses to examine the ability of the adaptive sampling framework to produce an ANN
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Figure 1: Validation metrics for (a) R2 and (b) mean-squared error (MSE) of adaptively trained MLP
surrogate when trained on a given master training data set size. Clear, but relatively minor, differences
are seen between using either Z̄ or Prad as the decision metric for the RFR low fidelity surrogate.

Figure 2: Kernel density estimate plots demonstrating the true and predicted relationship between
output field quantities of total radiation Prad and the population density of the Ne+10 ion for (a) MFP
conventionally trained on fixed set of 3375 samples, (b) MFP adaptively trained on 1719 samples
by using Z̄ as a guiding metric, and (c) MFP adaptively trained on 1890 samples by using Prad as a
guiding metric.

surrogate trained on largely autonomously gathered training data. Employing the two scalar metrics
of Z̄ and Prad in RFR decision making, we found both cases produced a steady gain in validation
R2 performance and drop in validation MSE as more samples were acquired, as shown in Figure 1.
Ultimately the adaptively trained MFP surrogates passed the R2 threshold of 0.95 and final surrogate
models were obtained with a validation R2 of 0.983 and MSE of 8.422× 10−4 for the Z̄ metric case,
after 1719 samples were acquired. Similarly the case of the Prad metric obtained a validation R2 of
0.965 and MSE of 1.587× 10−3 after 1890 samples were acquired.

Testing the adaptively trained MLP surrogates on an unseen data set, compared to that from training
or validation, we present kernel density estimate (KDE) plots in Figure 2 showing the relationship
between the output field quantities of total radiation Prad and the population density of the Ne+10 ion
as a way to demonstrate the performance of predicted quantities versus the true values. Here we see,
compared to the ANN trained on a larger training set, the Z̄ guided surrogate performs reasonably
well, with the exception of some translation of the prediction over the two upper islands in the plot.
Similarly, the surrogate guided by the Prad metric does not accurately reproduce the upper two islands
of the KDE. We note that testing R2 values of 0.982 and 0.967 were obtained for the adaptively
trained networks informed by Z̄ and Prad respectively. Given the primary motivator of constructing
a framework for surrogate training was for rapid in situ evaluation, a timing comparison for 1000
forward pass evaluations of the ANN surrogate and original CR model FORTRAN executable
was performed to highlight the compute time savings. The mean surrogate execution time was
approximately 4.2 ms, while the mean CR model forward pass execution was 2.7 s.
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4 Conclusion and Future Work

In this work we have proposed employing strategically trained, fit-for-purpose surrogate models
for evaluation of quantities normally accessed by collisional-radiative modeling in a thermal fusion
plasma. We have demonstrated the vast savings in execution time of such a surrogate, which would
reduce computation bottlenecks in flagship plasma simulation codes compared to if a conventional
CR model solve was performed. We have demonstrated the capability of an adaptive sampling
framework to automatically generate training data in statistically meaningful areas of our parameter
space. This training technique then allows the possibility of (i) faster acquisition of a sufficiently
trained ANN surrogate, and (ii) assurance that data assembled for training is representative and
meaningful towards training the surrogate - rather than simply being random. While the present CR
model employed in this study to develop the training method is comparatively fast compared to more
accurate and expensive models, and generation of many thousands of random training data points
for a conventionally trained ANN is not too burdensome, we note that great savings will be found
when this method is applied to more accurate, but time consuming, forward models - where a single
CR model solve can take on the order of an hour. It is thus intended in future to utilize the adaptive
sampling training method towards creation of ANN based surrogates for accurate CR models that
would allow rapid evaluation of accurate ion and radiation properties for multiple atom types within a
fusion plasma following the injection of an impurity species, such as neon or argon. Future work
avenues will explore transfer learning of the ANN (rather than retraining), and parallelized sampling,
for example employing DeepHyper [15].
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Broader Impact

The ITER project will explore a range of tokamak plasma operating conditions, with the hope of
eventually producing a burning, self-sustaining plasma to demonstrate nuclear fusion. The biggest
threat to the ability for ITER to safely operate is that of plasma disruptions, which can produce
extreme heat being deposited to the reactor walls, or the generation of relativistic electron beams
which can impact the reactor walls. Either scenario could be catastrophic to the containment vessel
surrounding the plasma. To mitigate this disruption scenario, the current ITER strategy is to inject
impurity particles into the plasma. To plan for this scenario, and to maximize the chances of success
of this strategy, large-scale plasma physics models require information on the ion population in the
plasma, as well as the radiation produced by the excited states of these ions. In order to retain a
high fidelity of physics, while allowing rapid evaluation of these quantities, we propose employing
data-driven surrogates to allow forward pass evaluation on the order of milliseconds, instead of
seconds or longer, depending on the sophistication level of the original physics-based forward model.
To ensure efficient training from the forward physics model, we propose the accumulation of a
statistically meaningful training data set in an adaptive manner. This is achieved by focusing on
greater data generation in regions that display greater uncertainty from ensemble predictions of
low fidelity models. Therefore, the final data set represents the parameter space of interest in an
efficient manner. In doing so, we hope to promote a step-forward in plasma modeling capabilities
by allowing sophisticated atomic and molecular physics to be included in-situ with flagship fusion
plasma simulation codes.
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