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Probabilistic neural network-based reduced-order surrogate for fluid flows
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_ Introduction
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w = argmin,,[E(y, F(x; w)))

+ Neural networks (NNs) have shown their great potential
as an universal approximator in physical sciences
* NNs are usually handled as Black box
- No feedback for us
* L, error based deterministic regression: no nofion of
confidence intervals
* How is the probabilistic view?

* Variational inferencel'!, Gaussian process approximation!?!

- Enables us to not only assess model and data but also

quantify uncertainty [1] Blundell et al., arXiv preprint, 2015

[2] Damianou and Lawrence,
Artificial Intelligence and Statistics, 2013

- Probabilistic neural network (PNN)[3!
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w = argmin ,LC,' where £=—logl = E P(Yk.plxk) log p(yk.+)
k=1

+ Focus on probability distribution of estimation, which can
be approximated as linear superposition

+ Attempts to get the probability distribution of output directly
+ Loss function: Maximization of log-ikelihood

- Suitable to utilize the full distribution of estimation by PNN
[3] Bishop, 1994

PNN-based reduced order model with
proper orthogonal decomposition
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Reconstruction
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- Input: 5 sensors on surface of an airfoil at the first snapshot
- Output: 50 POD modes over 12 time steps

* PNN can accurately estimate the temporal evolution of POD

. . . H [4] Gopalakrishnan Meena et al.,
while showing its confidence interval ! Gopatskisne

NOAA sea surface temperature

POD coefficients over time
1. Take POD for flow field and obtain temporal coefficients

M
q=qo+ ) _ aipi
2. PNN attempts to predict a temporal evolution of POD coefficients
over n time steps from local sensor informati%? s at the first time step

{m(s"),m(s"),0(s")} = F(s'), plags’) =D m(s N (ui(s'),04(s"))
i=1

a; = [a',a?,...,a"], where a* = [a},d, ..., a4,]

Results

_ Comparison with benchmark linear method (Gappy POD) .

Example: Two-dimensional inviscid shallow water equations
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- PNN exhibits the significant advantage even atn____= 3800
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* Input: 30 sensors at the first snapshot 0147
- Output: 4 POD modes over 100 weeks
- PNN also performs well for real-world data set

Conclusions

- Introduced PNN to quantify uncertainties for fluid flow
surrogate modeling and data reconstruction

- Provided confidence intervals can be useful for additional
sensor placements in fluid flow data recovery tasks!®!
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