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We aim to determine some physical properties of distant galaxies (for example, stellar mass, star formation history, or chemical enrichment history) from their observed spectra.
Unfortunately, identifying a training set for this problem is very hard, because labels are not readily available - we have no way of knowing the true history of how galaxies have
formed. One possible approach to this problem is to train machine learning models on state-of-the-art cosmological simulations; however, it is unclear how models will perform
once applied to real data. In this paper, we attempt to model the generalization error as a function of an appropriate measure of distance between the source domain and the
application domain. Our goal is to obtain a reliable estimate of how a model trained on simulations might behave on data.

Framework Preliminary Results / Next Steps

The mapping of the physical properties of galaxies (stellar mass,
star formation history…) to observed quantities (spectra) is
described in nature by a function f(x).We are interested in
learning its inverse f−1, which allows us to estimate the
properties of galaxies from data.
In simulations, the direct function is g(x). We can verify that g(x)
is a good approximation of f(x) by using the distance in spectral
space as a proxy for the similarity between f(x) and g(x).

Now let us consider the other direction. The function g−1 can
be learned by, for example, training a machine learning model.
What happens if we apply the learned function g−1 to the
observed spectra (in other words, when we use it a proxy for
the function we want, f−1)?

There will be an additional term in the square error, which
comes from the fact that we learned the “wrong" function, g−1

instead of f−1. Our hypothesis is that the additional error will
depend in a predictable way on an appropriate distance metric
describing the similarity between the observed spectra and the
simulated spectra. If we can show that this is true, we have a
way of predicting the generalization error on data.

Methodology

- We generate 20 sets of simulations, changing the modeling
assumptions, and find a suitable representation feature space
for all the simulations sets

- We find an appropriate measure of distance between data
sets (Di,j where i, j� [1, 20]);

- We train 20 models, one per simulated set of spectra,
excluding the objects who participated to the feature
selection process, to learn as many inverse modeling
functions (g−1

i);
- We obtain 20 scatter plots of the distance metric versus the

generalization error obtained by applying the 20 functions
g−1

1
, g−1

2, …. g−1
20 … to each simulation set i;

- We use these 20 examples to infer a robust regression
between the distance metric Di,j mentioned above and the
generalization error incurred, and populate this plot:

If the regression relationship is sufficiently tight, we can use it
to predict the generalization error on data, based on
the distance between data and simulations.

Our chosen metric is the mean Euclidean distance in the space
of 100 most important features, ranked by running a robust
Random Forest model on a superset that combines examples
from all the 20 simulations. Objects in this superset are
excluded from further processing.

We show one example plot where the “target" set of spectra is
simulation 1, and we show the MSE that we obtain when we
apply the 20 learned inverse functions to recover the stellar
mass. There is a clear trend that suggest the possibility of fitting
the regression successfully. The trends seen here are similar to
what we observe in the other 19 plots. Next steps include:

• Refining our feature selection technique, e.g. by clustering
highly correlated features and selecting one per cluster;

• Understanding “failing" cases, such as outliers in our
distance/generalization error regressions;

• Using Convolutional Neural Networks, which have better
generalization properties than tree-based methods, to derive
the MSE used in these plots.

• Extending the framework to other tasks, such as inferring
dust properties or star formation histories.
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