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Abstract

High-fidelity combustion simulations are useful for optimizing engineering designs,
and can result in reduced design costs, increased engineering performance, and
lower emissions. However, these techniques are limited by high computational
expense. In this investigation, we accelerate unsteady combustion simulations by
employing random forests for dynamic combustion submodel assignment. Ran-
dom forests, trained with local flow properties as input variables and combustion
model errors as training labels, assign three different combustion models — finite-
rate chemistry (FRC), flamelet progress variable (FPV), and inert mixing (IM) —
with high classification accuracy in a priori tests. A posteriori simulations, inte-
grating the machine learning model in the computational fluid dynamics solver,
demonstrate that high-fidelity simulations can be performed with this approach at
significantly reduced cost compared to detailed chemistry simulations and simulta-
neously achieving improved accuracy over low-order combustion models.

1 Introduction

Combustion processes are ubiquitous in engineering applications, such as in rockets, power plants, and
automotive engines. Accurate combustion simulation techniques are useful for optimizing engineering
designs, and can result in reduced design costs, increased engineering performance, and substantially
lower greenhouse-gas emissions and pollutants. However, commonplace adoption of such high-
fidelity simulation techniques is often limited by their computational expense. Hence, a significant
portion of combustion research has been devoted to the development of cost-efficient physics-
based models for representing the combustion chemistry and turbulent scales [[1]] in computationally
expensive large-scale high-fidelity simulations.

Alternatively, data-driven methods can be employed for fast and accurate predictive modeling. In
particular, artificial neural networks have been employed for regressing thermophysical quantities [2-
6], and modeling turbulent terms [7, |8]]. However, applications of regression models in flow-physics
problems are still in their infancy, and face challenges when extrapolating beyond the training set —
resulting in generalization errors that arise from numerical predictions that only match specific flow
configurations represented by the training data [9].
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This study ameliorates this issue by employing a machine learning classification algorithm that selects
well-tested physics-based combustion submodels of varying fidelity and complexity, and assigns
them to different regions of the simulation domain. Thus, the potential numerical errors made by the
machine-learning algorithm are limited by the predictive capability of the lowest performing submodel.
To this end, we examine the feasibility of employing random forests [[10] for the purpose of local and
dynamic model assignment in large-eddy simulations (LES) of a gaseous-oxygen/gaseous-methane
(GOX/GCH4) rocket combustor [[11}12].

2 Mathematical models

Large-eddy simulations in the present study are performed by solving the Favre-filtered conservation
equations for mass, momentum, energy, and chemical species:
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with density p, velocity vector u, specific total energy e, stress tensor 7, and heat flux vector g;
= denotes a filtered quantity and ~ is a Favre-filtered quantity. Subscripts v and ¢ denote viscous
and turbulent quantities, respectively. The pressure p is computed from the ideal gas equation of
state. ¢, J, and S are the transported scalars, scalar diffusive fluxes, and scalar source terms for the
candidate combustion models. The dynamic Smagorinsky model [13] and dynamic thickened-flame
model [14] are used to model closure in the turbulent terms. Simulations are performed by employing
an unstructured compressible finite-volume solver [15H17].

In this work, we employ three different combustion submodels, namely an inert mixing (IM) model,
the flamelet/progress variable (FPV) model [[18}19], and a finite-rate chemistry (FRC) model. The
present framework couples the different combustion models with the approach developed by Wu
et al. [[17]], which ensures the conservation of mass, momentum, and energy. The GRI-3.0 chemical
mechanism [20], involving 33 chemical species, is used to describe combustion chemistry.

3 Data-driven methods

In this section, we describe the procedure for incorporating a supervised learning algorithm for
combustion submodel assignment. Firstly, we use the instantaneous flow-field solutions from the
FRC simulation of the combustor as the learning dataset. FRC data are then used to reconstruct FPV
and IM quantities of interest & € @ by interpolating from generated flamelet tables [21].

oV ~ aly.(Zre, Crre) Where y € {FPV,IM} . )

Secondly, we assign labels ) = {IM, FPV, FRC} to the training data. We consider FRC as combus-
tion model of highest fidelity but at the expense of highest computational cost. Therefore, we assign
labels in the training set based on the normalized combustion submodel error e% of quantities of
interest « € () between FRC and the models of lower fidelity [22]:

1 |afRE — Y|

Q=7 > e with y € {FPV,IM} , ®)
« oo
acQ

where the error for considering N number of quantities of interest (Qols) is a normalized linear
combination of each individual submodel error. A model of higher fidelity is assigned when the
Qol submodel error eyQ exceeds a user-defined threshold 9%, with FRC chosen when all conditions
for selecting FPV and IM are not met. Figure |l| shows the use of this labeling approach on the

training data in mixture fraction-progress variable (Z-C) composition space for 67 coy = 0.02 and
0¢r,coy = 0.05, respectively. In both cases, IM is shown to be assigned at points where C' ~ 0,

FPV is assigned mostly to conditions near the equilibrium composition. The submodel assignment
reverts back to FRC in regions dominated by non-equilibrium effects and heat-losses that are not



captured by the adiabatic steady-state flamelet formulation. Employing 07 coy = 0.02 is seen to
be more stringent than employing 67 coy = 0.05, with a 0.18 greater fraction of scatter data on
the stable branch assigned as FRC, especially for fuel-rich mixtures. It should be noted that while
most out-of-flamelet regions would be assigned FRC, some regions with low reactivity and far from

stoichiometry (eg. Z = 0.7) generate smaller errors which are then be assigned FPV.
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Figure 1: Training data for two different combustion submodel error thresholds 07 coy-

Thirdly, we construct the feature vector x € X'. To this end, we applied the Maximal Information
Coefficient (MIC) [23] to identify the top six (out of fifteen) thermophysical quantities with the
strongest relationships with the local combustion submodel error. These six features, namely mixture
fraction, progress variable, density, local Prandtl number, and Euclidean norm of the mixture fraction

gradient, viz., ¢ = [Z,C,p,T, Pra, |V Z||,] are then selected for constructing the feature set.

Lastly, we train, validate, and test the classification algorithm. In the present investigation, the random
forest classifier from the OPENCYV library [24] is used. Classification cost scales with the number of
trees, tree depth and the number of training points [25]. Hence, a random forest consisting of twenty
decision trees, and maximum depth of ten nodes is employed. Additionally, 1 x 10 training points
have been randomly sampled from a single simulation snapshot consisting of 2 x 10° cells. A similar
approach is used in other supervised learning problems [9]. We note that the flow in the present
configuration is statistically stationary, and thus training data from a single snapshot was found to be
sufficient for representing the thermophysical behavior of the combustor. The number of trees, tree
depth, and the number of training points are determined a priori by ensuring that the classification
performance remains unchanged on a validation set. Training is performed once a priori, and requires
530 ms of walltime with 1 CPU. In a posteriori simulations, random forest evaluations for 2 x 10°
cells at each timestep require 1 ms of wall time with 600 CPUs.

4 Experimental configuration and computational setup

We perform simulations of the gaseous oxygen-gaseous methane rocket combustor setup by Sil-
vestri et al. [[11} [12] using an axisymmetric domain. Inlet fuel and oxidizer mass flow rates and
temperature, along with chamber and nozzle wall temperatures are prescribed following experimental
measurements 11,112, 26]]. All remaining boundaries are defined as adiabatic non-slip walls with
the exception of the exhaust, which is modeled as a pressure outlet. The computational domain is
discretized by a block-structured mesh consisting of 2 x 10° cells. The wall-normal direction is
resolved down to 30 pum, and a wall model [27] is employed for the viscous sublayer. A typical
timestep is 25 ns, corresponding to a convective CFL number of 1.0.



5 Results

We first perform an a priori assessment to determine the accuracy of random forest classification, as
shown in Table[T] on a monolithic FRC simulation test dataset from an unseen timestep. Temperature
and CO mass fraction fields from the test dataset are shown in fig. . and . Temperature 7 is
chosen as a Qol to describe the combustion efficiency and engine performance. CO mass fraction,

Yco, is chosen to challenge the deficiencies of FPV and IM in capturing intermediate species [17]].
Throughout this study we explore cases that use the same threshold for both IM and FPV, viz,
05 = 05" = ¢ for simplicity. Classification accuracy range from approximately 0.7 to 0.8, which
is comparable to the use of random forests in other flow physics problems [28].

Table 1: Classification accuracy and submodel assignment of cases investigated.

[ Case, [ 00=0.05 0c0=0.05 07=0.02 0c0=0.02  0{1,c0}=0.05  81,c03=0.02 |
Quantity-of-interest, ¢ T Yco T Yco {T,Yco} {T,Yco}
Classification accuracy 0.774 0.756 0.725 0.715 0.753 0.734
IM:FPV:FRC 5:67:28  18:48:34  5:33:62  18:35:47 6:63:31 6:42:52

Figure 2k. and2ld. demonstrates the a priori combustion submodel assignment on an unseen FRC-
simulation snapshot for cases 0;7 coy = 0.05 and ;7 coy = 0.02. For both cases shown, inert
mixing (IM) is assigned in 6% of the domain at the injector and the oxidizer core, where chemical
processes are insignificant. In general, FRC is assigned at the near-wall and fuel-rich regions within
the combustor where intermediate species reactions are not captured well by tabulated chemistry
submodels. 07 coy = 0.05 results in 31% FRC assignment within the domain, while 67 coy = 0.02
results in 52% FRC assignment. We observe that model assignment in both cases is not spatially
smooth, and that model assignment appears speckled. This is because the smoothness of classification
boundaries formed within the 6-dimensional feature space is not translated when transformed to
physical space. This is a common issue in classification problems involving spatial data, such as in
medical imaging or image processing. Two strategies can be employed to improve spatial smoothness
in classification problems [29] 22]]: (i) applying the classification techniques to a neighborhood of
cells, or (ii) applying a spatial filter on the predicted labels and discretizing the filtered labels. In the
a posteriori simulations in fig. 3] we apply the latter strategy since it is better suited with the current
framework that uses local quantities as Qols and features.
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Figure 2: Instantaneous (a) temperature, (b) CO mass fraction, and (c,d) combustion submodel
assignment from test set in the a priori assessment. The location of the stoichiometric mixture,

Zg = 0.2, is shown by black lines.

Figure [3] compares temperature and CO mass fraction fields from the rocket simulation using
monolithic FRC, monolithic FPV, and a posteriori data-assisted (DA) simulations. The data-assisted
simulations integrate the trained random forest model in the computational fluid dynamics solver to
carry out dynamic submodel selection. Note that the FRC simulation results in the highest fidelity,
and requires the most computational resources. When compared to monolithic FRC LES, some
notable differences are observable from the FPV simulations. In particular, a thicker thermal boundary
layer is seen for the FPV simulation, resulting in cooler temperature near the wall. Low near-wall
temperature results in greater CO formation.
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Figure 3: Instantaneous (a,b,c,d) temperature and (e,f,g,h) CO mass fraction for all simulations.

The location of the stoichiometric mixture, Zs; = 0.2, is shown by black lines. (i,j) Combustion
submodels used in the data-assisted (DA) simulations are also presented.

A posteriori data-assisted (DA) simulations using two different model thresholds, 07 coy = 0.05
and 07 coy = 0.02 are performed by employing random forest classifiers in-flight for combustion
submodel assignment during simulation runtime. Employing model threshold ;7 coy = 0.05 on
the DA simulation results in temperature predictions that are in good agreement with the monolithic
FRC simulation. However, a greater CO mass fraction is observed compared to monolithic FRC
simulations. Tightening the model threshold 67 coy = 0.02 results in temperature and CO mass
fraction fields that agree with the monolithic FRC LES. The corresponding combustion submodel
assignment is shown in fig. 3} FRC utilization for 67 co; = 0.05 is at 34%, resulting in 70%
FRC cost, or — equivalently — a reduction in the computational cost by 30%. Model assignment for
(1 ,coy = 0.02 results in 60% FRC utilization, resulting in 80% FRC cost.

6 Conclusions

This work proposes a data-driven modeling approach by which random forest classifiers spatially
and dynamically assign three different candidate combustion submodels. This modeling approach
is demonstrated in simulations of a complex rocket combustor. Results demonstrated that random
forests showed high classification accuracy for this task. A posteriori simulations incorporating
random forests showed significant improvements from monolithic FPV simulations in all quantities
at a 30% lower cost than monolithic FRC calculations. Interesting opportunities for extending this
work include (i) the exploration of other classification algorithms, and (ii) the addition of non-local
quantities in the feature and label set.



Impact Statement

Combustion processes are common in engineering applications, such as in power generation, propul-
sion, and chemical engineering. These processes involve complex physical and chemical phenomena
— thermochemistry, chemical kinetics, molecular transport, heat and mass transfer, and laminar and
turbulent fluid dynamics. Therefore, accurate combustion simulation techniques are useful for optimiz-
ing engineering designs, and can result in reduced design costs, increased engineering performance,
and lower emissions. However, straightforward adoption of such high-fidelity simulation techniques
are often limited by costly computational resources as a consequence of accurately describing the
complex physico-chemical phenomena. By directly addressing this issue, we have developed and
demonstrated a method for employing data-driven methods, by integrating random forests into the
computational fluid dynamics solver, for reducing computational costs while maintaining high fidelity
of combustion simulations.
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