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Abstract

The identification of solar coronal holes (CHs) observed in Extreme Ultraviolet
(EUV) intensity images of the Sun is key in improving our understanding of their
association with solar magnetic fields and heliophysics. In particular, CHs at
the poles of the Sun are a notorious source of fast solar wind and thus warrant
further study, most notably in the context of space-weather forecasting. This has
consequently led to the development of various segmentation methods for their
identification, including supervised machine learning. We introduce the SEARCH
project to combine EUV data from the three vantage points offered by the SoHO,
STEREO-A and STEREO-B satellites during the 2010-2014 epoch to produce
synchronic maps and apply unsupervised learning methods including clustering
and convolutional neural networks for the segmentation of CHs. SEARCH seg-
mentation maps provide a venue to explore the relationship between CH pole areas,
geomagnetic activity, and the magnetic activity cycle (dynamo process) of the Sun
and Sun-like stars.

1 Introduction

The polar regions of the Sun remain elusive to the current constraints of solar imagery. No spacecraft
has yet left the ecliptic plane by more than a few degrees from a heliographic view. This lack of
direct measurement of solar poles has necessitated indirect methods for understanding the polar
environment. Magnetic fields at the poles are notably used to forecast upcoming solar magnetic
activity cycles (Schatten et al., 1978; Schatten, 2005; Svalgaard et al., 2005; Pesnell and Schatten,
2018). Additionally, the influence of polar CHs extends well beyond the immediate solar atmosphere.
For instance, high-speed solar wind streams have long been known to originate from CHs (Nolte
et al., 1976; Harvey and Sheeley, 1978; Wang and Sheeley, 1990).

Identification of CHs and Active Regions (ARs), the most important visible features on the solar
disk, is crucial for understanding and making predictions for space weather. CHs are thought to be
dominated by the open magnetic field lines that thread through the solar atmosphere plasma and
extend into the heliosphere. CHs are defined by their low emissivity in extreme ultraviolet (EUV)
and soft X-ray wavelengths and their low plasma density (Bohlin, 1977), which result in dark regions
at those wavelengths. ARs are typically associated with closed, confined magnetic field lines and
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have been studied extensively due to their role in the eruptive processes such as flares and Coronal
Mass Ejections (CMEs). The correlation between the solar magnetic cycle and the apparent size and
shape of polar CHs is a matter of ongoing investigation (e.g., Waldmeier, 1981; Bravo and Stewart,
1994; Harvey and Recely, 2002; Kirk et al., 2009). These studies have utilized digitally-assembled
global maps of the Sun, such as synoptic maps (e.g., Hess Webber et al., 2014; Lowder et al., 2014;
Karna et al., 2014).

Although intensity-based thresholding methods of identifying CHs are the most common (e.g., the
CHIMERA catalogue: Garton et al., 2018), other venues have been explored. Verbeeck et al. (2014)
used a probability distribution function of EUV image pixel intensities and a clustering technique
to segment CHs with the Spatial Possibilistic Clustering Algorithm (SPoCA). Recently, supervised
machine learning (ML) was used to identify CH boundaries in full-disk images (Illarionov and Tlatov,
2018) and synoptic maps (Illarionov et al., 2020) of the Sun at 193 Å such as the one in Figure
1a. Illarionov and Tlatov (2018) trained a convolutional neural network (CNN) on segmentation
maps that were generated by the Kislovodsk Mountain Astronomical Station using a semi-automatic
procedure. The drawback of supervised ML is its reliance on catalogues of consistently identified
CHs for training. At best, supervised ML will emulate the database it was trained on. With no existing
ground truth for CH boundaries, there are considerable challenges in determining the accuracy of
models and catalogues.

In this paper, we address the identification of CHs in an unsupervised learning setting, i.e. without the
use of models or databases and the biases they may have. We introduce the open-source Segmentation
of polAR Coronal Holes (SEARCH1) project which will include (a) a data reduction pipeline to
fetch and preprocess EUV images from the SoHO and STEREO satellites and combine them into
synchronic maps, and (b) unsupervised learning algorithms ranging from clustering to segmentation
to identify polar CHs in synchronic maps.

2 Synchronic Maps of the Sun

Synchronic maps take advantage of the multiple viewing angles of complementary spacecrafts to
fully map the Sun in the EUV wavelengths at a given time. Synchronic maps are advantageous over
synoptic maps because they do not rely on the solar rotation to assemble a full-Sun image and account
for the dynamic evolution of CHs over that 27-day period. The multi-viewing angles capture entirely
the boundaries of polar CHs, provided the timely alignment of the satellites’ orbits (e.g., Figure 1b).

The advantage of using synchronic maps in the detection of the coronal holes is shown in Caplan
et al. (2016). The aforementioned study provides single-wavelength synchronic maps between June
2010 to August 2014 located at the Predictive Science Inc. (PSI) database2. PSI synchronic maps
combine data at 195 Å captured by the Exteme UltraViolet Imagers (EUVIs: Wuelser et al., 2004)
on board the Solar TErrestrial RElations Observatory Ahead (STEREO-A) and Behind (STEREO-B)
and data at 193 Å captured by the Atmospheric Imaging Assembly (AIA: Lemen et al., 2012, see
Figure 1a) on board the Solar Dynamics Observatory (SDO).

The definition of CH boundaries is ambivalent because they appear differently in different wavelength.
As part of the SEARCH collaboration, work is underway to utilize the available multi-wavelength,
multi-instrument legacy EUV data to create a database of synchronic maps and explore CH boundaries
in a holistic way. To this end, we combine data from the Extreme ultraviolet Imaging Telescope
(EIT: Delaboudinière et al., 1995) on board the Solar and Heliospheric Observatory (SoHO) and the
STEREO-A and -B EUVIs. For all three instruments, we process images in three wavelength-filter
channels: 171 Å, 195 Å and 304 Å. Preprocessing steps of the data include wavelet enhancement
of the images to reduce noise and increase their contrast (e.g., see Stenborg et al., 2008) and the
homogenization of data from multiple sources through the histogram-matching algorithm described
in Hamada et al. (2020). The aforementioned steps will result in over 2000 three-channel full-Sun
synchronic maps during 2010-2014 that will be used for the automated detection of CHs with
SEARCH. However, for the purposes of this paper we test the validity of the unsupervised learning
methods included in SEARCH on PSI single-wavelength synchronic maps.

1 SEARCH Github page: https://github.com/heliohackweek/polar_coronal_holes. 2 Predictive
Science Inc. synchronic maps: http://www.predsci.com/chd/chd_maps.html.
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Figure 1: (a) Full-disk image of the Sun captured by SDO/AIA at 193 Å on 2012-03-18 at 18:05(UT).
(b) Positions of the SDO and STEREO satellites at the time of observation in (a).

3 Unsupervised Learning for Segmentation

Unsupervised learning is performed on synchronic maps in one of two techniques: (1) Clustering with
the K-means algorithm and (2) a recently developed W-net convolutional neural network (CNN). The
K-means algorithm iteratively assigns pixel values in single-channel or three-channel EUV images
to a given number of classes by minimizing distances between cluster points and maximizing the
distance between clusters. The number of classes is optimized using the elbow method (Joshi and
Nalwade, 2013). Each class is then compared and associated with the different structures observed in
EUV images of the Sun such as ARs (appearing as bright structures) and CHs (appearing as dark
structures). This approach is comparable to the SPoCA-suite, but for synchronic maps.

CNNs excel at identifying features at different spatial scales and segmenting images. For example,
U-nets are fully CNNs that inherit their name from their U-shaped architecture, consisting of a
contracting branch for context and an expanding branch for localization. U-nets were previously
shown to be effective at identifying CH boundaries in a supervised learning framework (Illarionov and
Tlatov, 2018; Illarionov et al., 2020). The recently developed W-net, an architecture that merges two
U-nets to form an autoencoder, segments images in a fully unsupervised framework (Rajendrakumar
Gare et al., 2020). More specifically, the first U-net is an encoder to produce a segmentation map
from an input image, whereas the second U-net is a decoder to reconstruct the input image from the
segmentation map. A fully-connected conditional random field (CRF) mask is then applied to smooth
the segmentation maps. We have adapted the W-net architecture for single-channel and three-channel
synchronic maps, but no further optimization has been performed at the moment.

4 Preliminary Results

First order comparisons are limited to existing catalogues and methods as there is no objective way to
define CH boundaries. The unsupervised learning methods included in SEARCH are implemented and
tested using single-wavelength synchronic maps from the PSI database for CH evolution (see Section
2). The 6004 PSI synchronic maps can feature missing data due to the alignment of the satellites and
the combination process. The database also includes publicly-available CH segmentation maps that
were identified using EZSEG, a region-growing-style algorithm described in Caplan et al. (2016). The
intersection over union metric (IoU) and the structural similarity index (SSIM) were used to measure
the accuracy and the similarity of the K-means and W-net predictions with respect to the existing PSI
CH detections, as described below. In this context, the IoU and SSIM metrics must be interpreted as
a measure of consistency with existing methods, not as a measure of performance.

The K-means technique was trained using a set of 15 images to identify 6 clusters, i.e. the optimal
number computed by the Elbow method, and then tested on approximately 6000 maps. Any missing
data were removed from the K-means input EUV images as well as from PSI CH masks when
performing comparisons. Among identified clusters are features that resemble closely CHs (e.g.,
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Figure 2: Segmentation maps generated by (a) the K-means method using 6 clusters and (b) the
W-net from a synchronic map at 195 Å (displayed as colored background) found in the PSI database.
Clusters that best identify CHs (resp. ARs) are segmented in yellow (resp. in magenta).

Figure 3: (a) Wilcox Solar Observatory polar magnetic field observations from 2010 to 2015. Poles
are defined where the latitude |θ| > 55◦. (b) Evolution of polar CH areas inferred using K-means.
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see yellow contours in Figure 2a) and, as a bonus, ARs (magenta contours). Mean values of SSIM
and IoU when K-means is tested against the entire PSI database are 0.96 and 0.60 respectively,
suggesting a good agreement. Metrics change slightly when considering regions with missing data in
the comparison because the PSI database CHs were identified using a region-growth method.

Over 1500 PSI synchronic maps were used to train the W-net. Input EUV images and reference CH
masks were downsampled by a factor of 10 in each spatial dimension for memory considerations.
Pixels where data is missing were thresholded to the minimum intensity value. Preliminary tests
performed on 4000 low-resolution synchronic maps with little to no missing data show promising
results as the W-net identified clusters for both CHs and ARs (yellow and magenta contours in
Figure 2b) which resemble closely that of the K-means method (Figure 2a). Mean values of 0.95
and 0.53 are achieved for the SSIM and IoU. However, W-net predictions from EUV images with a
non-negligible fraction of missing data (e.g., the PSI maps from the year 2010) result in departure
from the expected solution (not shown). This can be explained by the downsampling and upsampling
operations performed by the W-net. We expect that optimization of the data preparation and network
architecture will further improve the W-net’s ability at segmenting CHs and ARs.

4.1 Science Application: CH Area and Polar Magnetic Fields

The physics of CHs is still poorly constrained and even more so at the Sun’s poles. The magnetic
fields within a polar CH and the dynamics of the solar surface that drives the formation of this
region are largely unknown. We investigated the correlation between polar magnetic field strengths
and CH area between 2010 and 2015. The Wilcox Solar Observatory (WSO) has been performing
observations3 of the Sun’s polar magnetic fields since 1976. Figure 3a shows measurements of the
line-of-sight magnetic field strength that were collected for latitudes |θ| > 55◦ and then corrected for
projection effects using a 20 nHz low-pass filter. We estimated the area of (polar) CHs during the
same time window by computing the fraction of pixels that were labeled as CHs through unsupervised
learning. Figure 3b shows the possible range of CH areas estimated through K-means as a function
of time. For each band of latitudes, the lower curve assumes that there are no CHs where data is
unavailable (i.e., lower limit) and the upper curves assumes that all unavailable data belongs to CHs
(i.e., upper limit). As the polar magnetic field strength in Figure 3a decreases with time and reaches
a minimum some time between 2013 and 2014 (before undergoing a change in polarity), so does
the area of polar CHs (Figure 3b). This is especially apparent for the South pole of the Sun (orange
curve). Similar variations were found for polar CH areas estimated using the W-net (see Appendix
A). However, it is clear that the area of polar CHs do not track the measured magnetic field variations
at time scales less than a year nor are size and field strength linearly correlated. For example, the
size of the southern polar hole was measured to be approximately of equal size in mid-2010 and
mid-2014, yet the southern field strength in mid-2014 was nearly half of that measured in mid-2010.
This means CH size measurement are a good proxy for the long-term changes in coronal structure,
but more work is needed to causally link the two phenomena.

5 Conclusion and Future Work

We presented two unsupervised machine learning methods, i.e. K-means and W-net CNN, that
segment synchronic maps to determine solar CH boundaries. These methods are in good agreement
with other publicly-available CH segmentation maps. In addition to CHs, both methods identified
features consistent with ARs. Promising preliminary results warrant further exploration of single-
and multi-wavelength synchronic maps, most notably for the W-net, which was not optimized. Future
venues to explore with the SEARCH project include (1) the relationship between polar CH area and
geomagnetic activity using data from the Advanced Composition Explorer (ACE), (2) the correlation
between CHs (open magnetic flux sources) and space weather using legacy EIT synoptic maps which
cover a full 22-year solar magnetic cycle, and (3) ARs identification and segmentation. Previous
studies performed on synoptic maps have suggested a relationship between solar dynamo and the
size of polar CHs (e.g., Kirk et al., 2009; Waldmeier, 1981; Bravo and Stewart, 1994; Harvey and
Recely, 2002). Improvements to our understanding of the solar dynamo will also extend to Sun-like
stars. Finally, this study highlights the need for a multi-stereoscopic view of the Sun4 to further our
understanding of the Sun and the space weather (Morton et al., 2016).
3 Wilcox Solar Observatory polar field observations: http://wso.stanford.edu/Polar.html 4 SULIS:
https://sulis.space
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6 Broader Impact

Space weather refers to conditions on the Sun and the extended solar atmosphere (heliosphere)
that interacts with the immediate surrounding of the Earth’s atmosphere. The conditions of this
atmosphere can influence the performance and reliability of space-based activities including and not
limited to satellite navigation, communication and space travel, in a similar way to meteorological
weather and how it affects terrestrial activities. The modern society has become ever so reliant on
space based satellites, and this dependence is continuing to grow with the advent of newer and faster
modes of communications such as 5G. Such technological dependence is increasingly vulnerable to
disturbances from outside of the Earth system. Space weather and the importance of understanding
space weather drivers has been established over the past decades. Various government agencies have
started paying attention to the space weather, the House of Congress recently passed the Promoting
Research and Observations of Space Weather to Improve the Forecasting of Tomorrow Act, 2020
(PROSWIFT Act 2020) emphasising and acknowledging the importance of space weather and space
weather drivers in the future. Understanding the nature of polar coronal holes and the associated large
scale open-magnetic fluxes are one of the most important aspects of understanding space weather.
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A Appendix: W-net Predictions of Polar CH Areas as a Function of Time

Figure 4: Evolution of polar CH areas inferred by the W-net from synchronic maps that were
downsampled by a factor of 10 in each dimension. Poles are defined where the latitude |θ| > 55◦.

5 NASA HelioHackweek 2020 event page: https://heliohackweek.github.io/.
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