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Results

e Baseline s persistent forecast where the
prediciton for the entire sequence is the most
recent available observation of the magnetic
iIndex

Abstract

e Many systems used by society (GPS, power grid)
are vulnerable to extreme space weather

e EXxisting techniques exist to forecast specific
phenomena, but lack global coverage

Magnetic Index Forecasting

Treat this as a sequence-to-sequence learning problem using
recurrent neural networks

Data

e Magnetic Indices and Solar Wind Measurements downloaded from

e We use recurrent neural networks to NASA OMNIWek 20 Yr OMNIWeb Data
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Future Work

e [o improve forecasts, we plan to include coronal
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e \We use a simple neural network consisting of a multilayer LSTM followed
by a linear transformation
o Perform large scale random search [2] on Learning Rate, Weight
Decay, Batch Size, Epochs, LSTM Hidden Dimension using median
stopping rule using Ray [3]. All experiments done with PyTorch.

Source: NASA
e Magnetic activity at earth is largely driven by

processes that begin at the sun
e The Sun periodically emits Coronal Mass
Ejections (CMEs) which intensify the solar wind

and result in periods of increased magnetic Experiments image datase_t (available. at Iightslpeed) which
activity at Earth | should contain advance information about CMEs
e Magnetic Indices were invented to summarize o 20 Yr. OMNIWeb Datg - We split 20 years of OMNIWeb (po superDARN) or other activity
magnetic conditions in specific regions of earth: data into training, validation, and tes.tlng sets corresponding to 2000-2011, ¢ Use an autoencoder for coronal images in
o Disturbance Time Index (DST) - summarizes 2012-2013, and 2013-2019, respectively. combination with current LSTM approach
equatorial magnetic activity | | e Other architecture choices such as Attention

e SuperDARN Measurements - We include the available SuperDARN
measurements to measure the added predictive capability to the existing
OMNIWeb forecasts (including SuperDARN reduces our dataset size to
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o Auroral Electrojet Indices (AE, AL, AU) -
summarizes polar magnetic activity
o Planetary K (Kp) index - measures strength of
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