Simultaneously forecasting global magnetic conditions using recurrent networks

Charles Topliff*, Morris Cohen*, William Bristow[†] *Georgia Institute of Technology, [†]Pennsylvania State University

Abstract

- Many systems used by society (GPS, power gr are vulnerable to extreme space weather
- Existing techniques exist to forecast specirility phenomena, but lack global coverage
- We use recurrent neural networks simultaneously forecast multiple magne indices several hours in advance using sol wind measurements
- Improvement over a persistent baseline for experiments

Background

Source: NASA

- Magnetic activity at earth is largely driven by processes that begin at the sun
- The Sun periodically emits Coronal Mass Ejections (CMEs) which intensify the solar wind and result in periods of increased magnetic activity at Earth
- Magnetic Indices were invented to summarize magnetic conditions in specific regions of earth
 - Disturbance Time Index (DST) summarizes equatorial magnetic activity
 - Auroral Electrojet Indices (AE, AL, AU) summarizes polar magnetic activity
 - Planetary K (Kp) index measures strength magnetic storms and is used to decide on geomagnetic alerts
 - Solar Radio Flux at 10.7cm (F10.7) measur solar activity

	Magnetic Index Fo											
rid)	Treat this as a sequence-to-sequenc											
ific	recurrent neural networks Data											
to	 Magnetic Indices and Solar Wind Measure 											
etic	NASA OMNIWeb											
olar	 20 years of data dating from 2000 to 2 Interplanetary Magnetic Field (IMF) M speed V, Density n, Hour, Day, Year. Also use measurements derived from S 											
all												
	Also use measurements derived nom 3 [1]											
	40 45 50 55 Time (hours)											
	 At time t, use historical indices and solar wi [t - T_h, t] (blue) to predict magnetic indices from 											
	Model Trainir											
	 We use a simple neural network consisting by a linear transformation 											
	• Perform large scale random search [2]											
d	Decay, Batch Size, Epochs, LSTM Hido stopping rule using Ray [3]. All experime											
	Experimente											
ר: 5	 20 Yr OMNIWeb Data - We split 20 years or data into training, validation, and testing set 2012-2013, and 2013-2019, respectively. 											
of	• SuperDARN Measurements - We include the measurements to measure the added predict OMNIWeb forecasts (including SuperDARN the years 2013-2017, and we use similar transproportions as above)											
res												

recasting

learning problem using e

rements downloaded from

- 2020
- leasurements, Solar wind
- SuperDARN network of radars

ind measurements from $m(t + 1, t + T_{n}]$ (green)

- of a multilayer LSTM followed
- on Learning Rate, Weight den Dimension using median ents done with PyTorch.

- f OMNIWeb (no superDARN) ts corresponding to 2000-2011,
- he available SuperDARN ictive capability to the existing I reduces our dataset size to raining, testing, and validation

index

20 Yr OMNIWeb Data

	AE		AU		AL		Dst		f10.7		Кр	
Hrs	mNet	pers	mNet	pers	mNet	pers	mNet	pers	mNet	pers	mNet	pers
1	.901	.478	.885	.491	.874	.422	.976	.790	.995	.993	.937	.658
2	.782	.452	.789	.462	.743	.397	.949	.759	.994	.991	.882	.632
3	.696	.429	.715	.437	.656	.375	.918	.730	.993	.990	.825	.605
4	.650	.406	.665	.414	.616	.352	.892	.703	.992	.989	.790	.578
5	.622	.382	.627	.394	.594	.328	.870	.678	.991	.988	.757	.557
6	.598	.364	.598	.379	.574	.309	.850	.655	.990	.987	.726	.535

SuperDARN Measurements

investigated

- or other activity
- Mechanism

112(A6), 2007. 18). 2018.

Results

 Baseline is persistent forecast where the prediciton for the entire sequence is the most recent available observation of the magnetic

Table 1: Correlation coefficient of our model (mNet) versus persistent forecast (pers) for all indices

Figure 2: Correlation coefficient for all three models SuperDARN Measurement in experiment (no substantial performance increase)

Future Work

• To improve forecasts, we plan to include coronal image dataset (available at lightspeed) which should contain advance information about CMEs

• Use an autoencoder for coronal images in combination with current LSTM approach • Other architecture choices such as Attention

[1] WA Bristow and Poul Jensen. A superposed epoch study of superdarn convection observations during substorms. Journal of Geophysical Research: Space Physics,

[2] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13(1):281–305, 2012. [3] Moritz, Philipp, et al. "Ray: A distributed framework for emerging {AI} applications." 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}