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Abstract

The inability of RNN architectures to incorporate stable discrete-time linear time-
invariant dynamics has been a long-standing problem that has also affected their
performance in practice. To mitigate this problem, in this paper, we propose a
RNN architecture that embeds a linear time-invariant system basis comprising
of Laguerre polynomials inside its structure. Laguerre functions are a family of
Eigenfunctions arising from the Sturm-Liouville problem characterized by their or-
thonormality. Our RNN uses the embedded full state-space representation provided
by such orthonormal functions in two different variants: a general orthogonal La-
guerre network and a Ladder network. The state of such systems is used as a means
to preserve input information for more extended periods by an orthogonal encoding.
Both variants are enhanced by a non-linear static output layer that projects the state,
the memory, and the past output for the hidden state. The proposed models are
benchmarked exhaustively against other dynamical systems inspired-RNN’s on
two physics-based benchmarks that demonstrate their better performance.

1 Introduction.

The introduction of Legendre Memory Units (LMUs)[1] represents a deep connection between
recurrent neural networks (RNNs) and dynamical systems from the design point-of-view, despite
some previous efforts to analyze the structure from the dynamical systems perspective [2, 3]. The
memory update policy of LMUs is the state equation of a Discrete-Time Linear Time-Invariant
(DTLTI) system described by xk+1 = Axk + Buk where x ∈ Rn×1 is the memory (state of the
cell), uk is the input to the memory gate, and the pair (A,B) corresponds to a discretized state-
space representation of shifted Legendre polynomials, portrayed by n coupled ordinary differential
equations. The orthogonal time-domain projection inside LMUs improves memory capabilities and
reduces the number of trainable parameters. Nevertheless, LMUs only make use of the state equation.
The output equation (i.e., yk = Cxk) does not appear within their structure. The use of this equation
inside a RNN becomes even more relevant if the (A,B) pair represents an orthogonal family of
functions like shifted Legendre polynomials. With an embedded full state-space representation based
on orthogonal functions, a RNN would be able to learn any stable DTLTI dynamics [4]. In other
words, the use of the output equation would enable the RNN to steer the behavior of some internal
signal towards any energy-limited signal, encoded inside the DTLTI system represented by the state
equation and the output equation. Thus, the network’s generalization capabilities would be increased
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by including an orthonormal basis in the state equation and the explicit use of the output equation. In
this paper, we study how Laguerre polynomials can be used as an orthonormal basis and propose two
variants, Laguerre and Ladder RNN, respectively.

Laguerre functions are a family of Eigenfunctions arising from the Sturm-Liouville problem charac-
terized by their orthonormality. The set of Laguerre functions `(i)(t) (i = 1, 2, 3, . . . ) are defined
`1 (t) =

(√
2p

)
e−pt, `2 (t) =
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2p

)
(1− 2pt) e−pt, . . . , `i (t) =
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ept
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where p is a parameter called time scaling factor. Laguerre functions are a complete set over [0,∞).
Thus, they can be used to reconstruct any L2 function f (t) by means of a Generalized Fourier Series
(GFS) expansion f (t) =

∑∞
i=0 ci`

(i) (t) with ci being the ith coefficient of f on the ith element of
the Laguerre basis. Moreover, under mild assumptions on the function f ∈ L2, a GFS expansion
with N Laguerre functions can be used to define an arbitrarily close approximation to the function as∫∞
0

(
f (t)−

∑N
i=1 ci`

(i) (t)
)
dt < ε for any ε > 0 [5]. This characteristic means that it is possible

to represent dynamics whose characteristics are conveniently captured by an absolutely integrable
signal using a finite number of Laguerre functions [6]. In other words, it is possible to represent any
stable LTI dynamics by Laguerre polynomials.

Laguerre polynomials have a convenient mathematical representation in state-space [5]. Let
l be the vector containing the first N Laguerre polynomials as functions of time (l =

[ `1 (t) `2 (t) . . . `N (t) ]
T ). In particular, we are interested in the values at t = 0, that

is, l (0) = [ `1 (0) `2 (0) . . . `N (0) ]
T . Then, the Laguerre polynomials can be generated

by l = eA`tl (0) where the matrix A`, referred to as Laguerre matrix, is parametrized in terms of
the scaling factor p and A` is a lower triangular matrix. This mathematical convenience supports
its application in areas such as Model Predictive Control [7, 5]. The vector of initial conditions
together with the Laguerre matrix can be used to constitute a state-space representation for any stable
continuous time (CTLTI) system [5]. For simplicity, consider the single-input single-output case
ẋ = A`x + B`u, y = C`x with A` ∈ Rn×n, B` = l (0), and C` = [c1 c2 . . . cn]. C` is a
coefficient matrix that depends on the system being considered. This equation can be extended to
multiple inputs by concatenating the initial condition vector along the columns, and computing the
coefficient vector for each of the output channels. Either way, the matrices A` and B` are fixed for
all stable CTLTI systems. The coefficient matrix which changes from system to system, represents
the coefficients of specific dynamics on the Laguerre basis.

A DT Laguerre network `(i)(z) is generated from the discretization of a CT Laguerre network, which
in turn can be defined as the Laplace transform of the corresponding Laguerre polynomial `(i) (s) =
L
{
`(i) (t)

}
. Let `(i)k = Z−1

{
`(i) (z)

}
be the inverse Z-Transform of `(i)(z) (i.e., the time-domain

representation of the ith Laguerre network). DT Laguerre sequences are orthonormal over k ∈ [0,∞),
so they can be employed as a basis to reconstruct any absolutely summable sequence (i.e., any stable
linear time-invariant system or finite-energy deterministic signal). The transfer functions of the DT
Laguerre networks are given by `(1) (z) =

√
1−a2

1−az−1 , `
(2) (z) =

√
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1−az−1

(
z−1−a
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where a is a parameter known as scaling factor that represents the location
of the Laguerre network pole [5]. Consequently, stability and non-alternating behavior requires
0 ≤ a < 1.

The Ladder network is founded upon a special case of Laguerre functions: discrete-time delays. The
dynamic behavior of delays has received particular attention from the deep learning community,
given their inherent long-term memory characteristics [8]. However, a practical implementation of a
CT delay requires a rational function approximation, usually through Padé approximants as done in
[8]. In contrast, DT delays have a simple transfer function representation (i.e., G(z) = 1/zm for an
m-sample delay) and a finite-dimensional state-space representation which makes them suitable for
an RNN implementation.

The proposed orthogonal architecture is detailed in Figure 1. The blocks with trainable weights
are colored in blue (output equation, memory filtering, and nonlinear output layer). Note that the
memory is constrained to have the same dimensions as the input so that it can be used to store input
information in the output of the dynamical system. The design is interpreted as follows: consider
an input with nu features (uk ∈ Rnu×1). The state the output equation constitute a DTLTI system
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that processes the past memory mk−1, state xk−1, and the current input uk to update the state xk

by xk = Axk−1 + B (uk +mk−1) where A ∈ Rn×n and B ∈ Rn×nu are discrete Laguerre
matrices obtained after discretization of the continuous Laguerre matrices. n is the network order
that corresponds to the number of Laguerre polynomials used to encode the DTLTI dynamics into the
RNN. Once the state is updated, it is fed into the output equation to compute the memory update mk

through the learnable coordinate matrix C. The memory is filtered elementwise by the local weight
vector wf to produce fk which is fed into the nonlinear output layer.

The nonlinear output layer has been adapted from the one proposed by [9]. It produces ny hidden
outputs through hk = yk ∈ Rny×1. The logits are computed by the linear combination of the previous
hidden output hk−1, the updated state xk and memory mk through the weights Wy,h ∈ Rny×ny ,
Wy,x ∈ Rny×n and Wy,f ∈ Rny×nu . The logits are passed through a nonlinear activation function
σ that counts with a bias term not shown in the diagram.

Laguerre and Ladder Networks: The Laguerre network uses a fixed pair (A,B) where A = A`

and B = B`. In other words, the RNN has to determine during training the coordinate matrix C
that results most optimal to the task under consideration. For this architecture, the order n (i.e., the
number of Laguerre polynomials) is left as a design hyperparameter. Further hyperparameters are the
scaling factor p (default, p = 1), the sampling time ∆T used for discretization (default, ∆T = 1 s),
and the sampling method (default, zero-order hold).

The Ladder network employs discrete Laguerre networks with a = 0 to introduce DT delay dynamics
inside the RNN. For this reason, the matrices (A,B,C) are non-trainable (i.e., the coefficient
matrix C is fixed). In fact, (A,B,C) correspond to a state-space realization for the Ladder system
G (z) = diag (1/zmi) ∈ Cnu×nu where m1, m2, . . . , mnu−1, mnu

are the delays of each channel,
fulfilling m1 < m2 < · · · < mnu

. Note that mnu
= md, the maximum delay, is specified by the user.

Using this input, the algorithm to construct the Ladder network in transfer function form distributes
the delays m1,m2, . . . ,mnu−1 equally among all the input channels. For example, for a system with
100 inputs and a maximum delay of 100, G(z) has the form of a diagonal matrix with the element in
dth row and column being 1/zmd .

Once the matrix G (z) is constructed, it is transformed into controllable-canonical form. The resulting
matrices (A,B,C) are set inside the RNN architecture (Figure 1) to construct the Ladder variant.
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Figure 1: Detailed Orthogonal Laguerre Recurrent Neural Network Architecture.
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2 Experiments

We validated the performance of our RNN architectures in two dynamical systems-based experiments.
In the time-series prediction benchmark, the goal is to predict a nonlinear system’s behavior from a
set of available measurements [10]. For the system identification experiment, the learning problem
aims at determining the state-space representation of a system from data as a regression task. Both
experiments are performed for a pendulum with no friction and a fluid flow system.

Implementation

All models have been implemented in Tensorflow using the keras API. Training settings were adapted
from those implemented by [1] and [11]. Experiments were executed on three different machines
with GPU capabilities (1080 GTX, Titan RTX and Quadro RTX), all running on Ubuntu 18.04.3 LTS.

Pendulum

The pendulum dynamics are represented as d2θ
dt2 + g

` sin θ = 0 with g = 9.8 and ` = 1 [10]. In
this case, the initial condition was changed so that the system will switch between linear (θ0 = 0.8)
and nonlinear operation (θ0 = 2.4). Notice that this pendulum equation considers no friction. A
state-space representation with x1 := θ and x2 := θ̇ is given by ẋ1 = x2, ẋ2 = − g

` sinx1. The
data is generated by integrating the pendulum equations directly using a numerical method in the
interval [0, 170] s with ∆t = 0.1 s. For system identification, an input (torque) is added to the ẋ2

equation as an input together with a friction term.

Fluid Flow System

This benchmark represents a nonlinear fluid flow past a circular cylinder at Reynolds number 100
[12]. The system of ODEs employed to generate the data is expressed as ẋ1 = µx1 − ωx2 +
Ax1x3 +u, ẋ2 = ωx1 +µx2 +Ax2x3, ẋ3 = −λ

(
x3 − x2

1 − x2
2

)
with µ = 0.1, ω = 1, A = −0.1

and λ = 10. The initial condition is taken randomly. Data is generated for the range [0, 2] s with
∆t = 0.001 s. For system identification, the equation for ẋ1 is perturbed by the input u.

In regards to the forecasting experiment, in contrast to the approach in [10], the problem is formulated
in a supervised framework where the training data batches are generated by the keras functionality
TimeseriesGenerator . Splitting between training and testing data is maintained (35.29% for

training, and 64.71% for testing). Results are reported for five different seeds in Table 1. The Laguerre
architecture accomodates to both the linear and the nonlinear environment despite its intrinsic linear
construction, whereas the Ladder network shows strong performance in noisy conditions.

Forecasting error is defined as the relative difference between the ground truth and the prediction at
the final step e = ‖ŷp − y‖2 / ‖y‖2 where ŷp is the forecasted output and y is the ground truth. The
experiments are performed in noiseless and noisy conditions (Gaussian noise). Results are shown in
Figure 2. The Laguerre RNN exhibits a lower variance across folds than Ladder and LMU thanks to
the adjustment of its internal dynamics during training.

Table 1: Prediction error at final step averaged over 5-fold for the prediction experiment

Model Pendulum (no
noise; linear)

Pendulum (noisy;
linear)

Pendulum (no
noise; nonlinear)

Pendulum (noisy;
nonlinear)

Fluid Flow (noisy)

Ladder 0.0150 ± 0.0050 0.0116 ± 0.0018 0.1819 ± 0.1041 0.1929 ± 0.1261 0.5135 ± 0.0626
Laguerre 0.0146 ± 0.0029 0.0168 ± 0.0057 0.1249 ± 0.0060 0.1257 ± 0.0059 0.7973 ± 0.5440
LMU [8] 0.2261 ± 0.0986 0.1914 ± 0.0817 0.5132 ± 0.2465 0.5012 ± 0.1133 1.3942 ± 0.0025
BRC [13] 21.8499 ± 1.8473 23.1749 ± 1.8363 14.0479 ± 4.1699 18.0374 ± 1.7233 0.6973 ± 0.1684
nBRC [13] 2.1914 ± 0.9910 1.7015 ± 0.4043 2.6853 ± 1.5883 3.0102 ± 1.0030 0.5656 ± 0.0481

System Identification Experiment: The system identification problem1 has been previously tackled
with supervised [14] and unsupervised learning approaches [10]. Our benchmark is constrained to

1See this GitHub repository for more details regarding data generation and pre-processing.
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Figure 2: Relative prediction error for the noisy nonlinear pendulum experiment.

the dynamical system ẋ = f (x, u) ,y = x where u is the external input. Since we aim at estimating
y = x, this can be considered a state estimation problem. The discrete version of the dynamics is
given by xk+1 = f̄ (xk, uk) ,yk = xk. A unit delay is applied to the state equation to bring it into
RNN form (hk = σ (uk,hk−1)). By doing so, we get xk = f̄ (xk−1, uk−1).

Considering sequences with nsteps time steps and a system with n ∈ N states, the state and the output
of the discrete-time system are concatenated to construct the input uRNN ∈ Rnsteps×n. The first row of

the input matrix is the transposed initial state vector x0 =
[
x
(1)
0 x

(2)
0 . . . x

(n)
0

]T
. The input values

are placed in the first column since it is assumed that the RNN will deal only with a single output.
Then, the RNN sees both the state and the exogenous signal u as inputs.

Training, testing and validation data (i.e., target output of the RNN y) are generated by applying an
input to the system and solving the underlying system of differential equations. For simplicity, we
assume an arbitrary random initial state, although assuming the system to be initially relaxed (i.e.,
zero initial state) is a common practice. The input is taken to be a random signal so that most system
modes are excited and can be detected in the output. RNN training is formulated as a regression
problem using MSE as a loss function. For the pendulum (with friction) and the fluid flow systems,
500 instances are generated, 10% of which is used for validation. Performance is evaluated using
averaged MAE with standard deviation over five-folds. Despite not being the best model for each
experiment, our proposals show a balance between number of trainable parameters and performance.

Table 2: MAE averaged over 5-fold for the system identification experiment and number of trainable parameters

Model Pendulum Fluid Flow Trainable Parameters

Ladder 0.0133 ± 0.0012 0.0206 ± 0.0095 59,788
Laguerre 0.0185 ± 0.0024 0.0037 ± 0.0001 100,792
LMU 0.0074 ± 0.0020 0.0166 ± 0.0003 100,536
BRC 0.0891 ± 0.0005 0.0040 ± 0.0009 4,802
nBRC 0.0067 ± 0.0065 0.0014 ± 0.0005 324,002

Conclusion: In this paper, we have presented our preliminary work on designing RNN architectures
inspired by discrete-time dynamical systems. Laguerre polynomials were chosen as the orthonormal
basis to incorporate the dynamics. Our proposed method provides better performance and also
reduces the number of trainable parameters compared to LMU’s.
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Broader Impact

Modeling non-linear dynamics from real-world time series data is a very important problem which
is highly relevant while monitoring asset health (for large assets such as steam turbines, energy
transformers) in Industry 4.0. Being able to predict and identify when the performance of an asset
will deteriorate can have large implications in reducing its effective downtime, and it can also help in
reducing the associated carbon footprint. Incorporating physics-based principles into modeling such
assets can be a more effective way of prediction, but it is also a more challenging problem. The ability
of Ladder and Laguerre RNN’s to learn stable DTLTI dynamics due to the encoded orthonormal basis
functions helps in improving the performance over other RNN’s while modeling dynamical systems.
Lower number of training parameters for Ladder RNN ensure that the models built are more tractable,
efficient and can be trained with limited resources.
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