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Abstract

We propose a novel data-driven approach to solving a classical statistical mechanics
problem: given data on collective motion of particles, characterise the set of free
energies associated with the particle system. We demonstrate empirically that the
particle data contains all the information necessary to infer the free energy of the
underlying physical system. Unlike traditional physical modelling, which seeks
to construct analytic approximations, our proposed approach leverages modern
Bayesian computational capabilities to accomplish the same goal in a purely data-
driven fashion. The Bayesian paradigm permits us to combine first principles with
simulation data to obtain uncertainty-quantified predictions of the free energy, in
the form of a probability distribution over the family of free energies, consistent
with the observed particle data.

1 Introduction

Statistical mechanics relates macroscopic properties of matter, such as pressure, magnetisation
or electric charge, to the underlying microscopic structure, given by the interactions between the
constituent atomic particles. This is accomplished by casting the desired macroscopic quantities as
averages over particle positions and velocities. Since in equilibrium particle velocities follow the
Maxwell distribution, the central problem of equilibrium statistical mechanics is in representing the
distribution over particle positions, ρ(r). Due to correlations between the particles, this is a highly
non-trivial task, even for systems with simple interparticle interactions. Statistical mechanics can be
formulated as a so-called Density Functional Theory (DFT), where the free energy of the system,
F [ρ], is expressed as functional of ρ(r). The equilibrium distribution ρ(r) is the one that minimizes
the free energy F [ρ], subject to suitable constraints [1]. In this work we deal with the inverse problem:
using observations of the instantaneous coordinates of the system’s particles, find an unknown F [ρ].

Modern DFT has a versatile plethora of computationally efficient approximate methods. In quantum
DFT, these encompass effective approximations for the exchange-correlation energy of the electronic
density, and in classical DFT, these constitute a library of methods to approximate the excess-over-
ideal Helmholtz free energy F [ρ], to account for interactions in classical many-body systems. In
the present work we focus on classical DFT and develop a data-driven Bayesian approach to the
derivation of F [ρ] of systems with excluded volume interactions, i.e. system of hard particles which
interact via elastic collisions. For such systems, exact F [ρ] is known only for one-dimensional (1D)
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fluid of hard rods (HR), constrained to a line [2]. Approximate DFTs are known only for a handful of
relatively simple systems, such as hard spheres or parallel hard cubes [3]. In general, constructing
DFT approximations from first-principles is a highly non-trivial task, and there is high need for an
algorithmic hands-off method for obtaining approximate DFT functionals. Since our goal here is
methodological, we work with the simplest possible system: 1D HR on a line. This system is chosen
for two reasons. Firstly, access to exact ρ(r) allows us to easily benchmark the inference scheme
against the ground truth. Secondly, data generation is easy in 1D, which facilitates convergence
studies and comparison to brute-force statistical inference. Application of our principled approach to
more complex system is straightforward, but would require more intense computational effort.

Separating the Maxwellian part, we can express F [ρ] = β−1
∫
ρ(r)

(
lnλ3ρ(r)− 1

)
dr + Fex[ρ],

where β is the inverse of temperature and λ is the thermal wavelength. The excess-over-ideal part
Fex[ρ] is what needs to be inferred from the data. The most successful existing approximations
for Fex[ρ] of hard-particle fluids are based on a physical intuition that Fex[ρ] in a unit volume is a
function of the geometric measures of the particles, expressed as partial densities {ni}:

βFex[ρ] =

∫
Φ(n1(r), n2(r), . . .)dr, ni(r) = ωi ∗ ρ ≡

∫
ωi(r + t)ρ(t)dt (1)

where ωi are window-functions, which allow us to compute particle volume, surface area, curvatures
and so on by taking convolutions as above [3]. In our case, rods of diameter 2R are moving on
a line, interacting via elastic collisions [r ≡ x, see Fig. 1(a)]. These particles are described by
volume (i.e., length) and surface area (i.e., the positions of HR ends). The respective window-
functions are ωv(x) = Θ(R − |x|) and ωs(x) = δ(R − |x|)/2, giving rise to two partial densities,
η(x) =

∫ x+R
x−R ρ(t)dt and n0(x) = (ρ(x−R) + ρ(x+R)) /2.

A one-dimensional system of hard rods inside a pore of width L is sketched at the top of Fig. 1(a)
for 2R = 1. In a so-called grand-canonical ensemble of statistical mechanics, the HR system is
considered open and connected to a reservoir or particles, held at chemical potential µ. This means
that there is a µ-dependent probability for insertion or deletion of a particle in the pore. In the present
paper we work in a grand-canonical ensemble, because the exact free energy functional of HRs is
known for this case and can be used for benchmarking. On the other hand, the collective behaviour
of HRs can be simulated in the grand-canonical ensemble using standard Monte-Carlo techniques [4].
This produces the training dataset Dµ, which consists of the expected number of particles 〈Nµ〉 in
the pore and a set of M instantaneous particle positions {yi}Mi=1:

Dµ =
(
µ, {yi}Mi=1, 〈Nµ〉

)
. (2)

When M is sufficiently large, the histogram of {yi}Mi=1 should approximate the DFT density profile
ρ(x), which minimizes the DFT free energy, and thus satisfies the following Euler-Lagrange equation:

ln ρ(x) +

(
ωv ∗

∂Φ

∂η(x)
+ ωs ∗

∂Φ

∂n0(x)

)
− βµ = 0, subject to

L/2∫
−L/2

ρ(x)dx = 〈Nµ〉. (3)

We attempt the inference of the term Φ(η, n0) above, in terms of a polynomial parametrisation:

Φ(n0, η) ≡ Φ(n0, η | Q) =
(
aN1n0(x)N1 + aN1−1n0(x)N1−1 + a0

) (
bN2η(x)N2 + . . . b0

)
, (4)

where the model parameter setQ = (aN1
, . . . a0, bN2

, . . . b0)
T hasNQ = N1+N2+2 elements. The

exact grand-canonical HR functional is given by ΦX(n0, η) = −n0 log (1− η) in Eq. (1) [2]. Thus,
the ground-truth ρ(x) ≡ ρX|µ(x) solves (3) with Φ ≡ ΦX(n0, η). Notice that since Φ(n0, η) is not
unique [any function which integrates to zero can be added to it in Eq. (1)], we do not expect to infer
ΦX(n0, η) precisely. We will characterise the posterior spread by bursts of samples of ρ(x | Q), and
the point-predictions – by maximum a-posteriori estimator (MAP), ρMAP(x) = ρ(x | argmaxP (Q)).
During training, we solve Eq. (3) numerically for a given Q, which is done using a Newton scheme.
The most numerically stable way to discretize Eq. (3) for our purposes is with a simple linear
interpolant, using trapezium rule for the quadratures.

2 Bayesian inference procedure

Clearly, not every Q yields an admissible free energy functional. Hence, we choose a Gaussian
prior N (Q | Q̄,ΣQ) with mean Q̄ = 0 and a diagonal covariance matrix ΣQ. With this prior on Q,
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Figure 1: Illustration of the trained HR functional. Simulated HRs have width 2R = 1 and interact
via elastic collisions. They are confined to a pore of width L = 8 and are held at chemical potential
µ = 2, so that 〈Nµ〉 = 4.6. The histogram in (a) shows the training dataset from Eq. (2) with
M = 1000 simulated HR coordinates, used to train F [ρ] with N1 = N2 = 5 in Eq. (4). The black
“curve” shows 200 profiles ρ(x), obtained from samples of the trained DFT functional. The spread of
these profiles characterises the uncertainty of the Bayesian scheme about F [ρ]. (b) and (c) show 200
samples in pores with L = 4 and L = 12, obtained from the same functional as (a). In (a)-(c), the
dashed red curve shows the ground truth in terms of exact distribution ρX|µ(x).

Φ(η, n0) is a Gaussian random field with polynomial features in η and n0. The prior variances on
Q are chosen to constrain the components of Q to be sufficiently close to zero. The expression for
Bayesian likelihood follows from the physical interpretation of ρ(x | Q) as the probability density
function: P (Dµ | Q) =

∏M
i=1 ρ(yi | Q). Posterior distribution over Q follows from the Bayes rule,

P (Q | Dµ) ∝ N (Q | Q̄,ΣQ)P (Dµ | Q), and yields predictive posterior distributions over F [ρ | Q]
and ρ(x | Q). Since P (Q | Dµ) is not analytically tractable and known up to a normalising constant,
approximate methods of inference must be considered.

We implement a Hamiltonian Monte-Carlo (HMC) algorithm to generate samples from the target
distribution [5]. This algorithm requires computing the gradient of the log-posterior ∇Q logP (Q)
at every iteration of the chain, and therefore the gradient of log-likelihood P (Dµ | Q). The latter
necessitates computing ∇Qρ, the Jacobian of the solution of Eq. (3) with respect to the parameter Q.
Computing this gradient directly would require solving Eq. (3)NQ+1 times to evaluate∇Q logP (Q)
rendering it computationally infeasible even for moderate NQ. Significant improvement can be
achieved by using adjoint differentiation methods, which allow us to relate the numerical solution of
Eq. (3) with its Jacobian with respect to Q via a simple linear system.

After tuning the HMC algorithm step-size and burn-in parameters to ensure that the output is stationary
and sufficiently fast mixing, we generate samples from the HMC using a sufficiently long run of
4 independent chains. The empirical predictive distribution for Fex[ρ] is then obtained from these
samples analytically via Eqs. (4) and (1) and gives the distribution over free energies, consistent with
the observed simulation data. We illustrate this in Fig. 1. Fig. 1 (a) shows the histogram of the training
data, the minimising densities ρ(x) of the trained F [ρ] (black), and the truth, given by the exactly
known distribution ρX|µ(x) (red). Noticeably, we are able to approximate ρX|µ(x) with relatively
few particle trajectories, attesting to the method’s ability to combine essential physical assumptions
with simulation data. Figs. 1 (b) and (c) illustrate the generalisation of the trained functional with the
pore width L. The functional trained at L = 8 is used for computations at L = 2 and L = 12 (at the
same µ = 2), with superimposed ρX|µ(x). The spread of the prediction curves ρ(x) indicates the
standard deviation and captures local uncertainty. This seems largest around turning points of the
profiles. The uncertainty can be reduced by increasing the size of the training dataset. For the wide
pore in Fig. 1(c) the effects of the side walls are lost in the pore center, and the fluid near the pore
center should behave like bulk fluid. The fact that the correct plateau of ρX|µ(x) is reproduced by the
trained F [ρ] means that the trained functional correctly captures the physics of the bulk fluid and its
thermodynamic equation of state. This result is physically remarkable considering the fact that we
were training on the data of a highly confined fluid, represented by the histogram in Fig. 1(a).

We cannot expect the model used of Fig. 1 to generalise with µ. After all, the training dataset currently
includes only a single µ-point. To achieve generalisation with µ we must extend the learning in two
ways: (i) provide training data for multiple values of µ and (ii) extend the model to accommodate
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Figure 2: Generalisation of the trained functionals with chemical potential µ, as expressed by Eqs. (5)–
(6). Two functionals, both with N1 = 3 and N2 = 8 (but different M ) are trained at K = 8 integer
values of µ = −2, . . . 5, using Mn = 104 particle coordinates per µ-point. Top and bottom panels in
(a)-(c) correspond to M = 0 (no µ dependence) and M = 1 (linear µ dependence). Depicted density
profiles minimise DFT at the specified µ and L, and due to symmetry are shown for −L/2 ≤ x ≤ 0.
The posterior spread is illustrated by 400 samples (grey). The MAP estimators (black dots) lie close
to the ground truth, ρX|µ(x) (red). Notice that the linear in µ model has less uncertainty, but the
µ-independent model has better MAP estimators, particularly in (a) and (b), where µ extrapolates
from the training set. This exemplifies over-fitting.

µ-dependence. Thus, we generalise Φ(n0, η | Q) to Φ(n0, η | Q(µ)) by representing each element of
Q as a polynomial of degree M . The new parameter set is represented by the NQ × (M + 1) matrix
A of polynomial coefficients:

Φ(n0, η|µ, α) ≡ Φ(n0, η | Q(µ | α)), Q(µ | α) = A
(
µM , µM−1 . . . 1

)T
, (5)

where α = (α1, . . . αNα)
T , Nα = NQ(M + 1), is the (row-wise) flattened matrix A. The training

data set D and the likelihood function for this extended model become:

D = {Dµn}Kn=1 ≡
{(
µn, {yi|n}Mn

i=1, 〈Nn〉
)}K

n=1
, P (D | α) =

K∏
n=1

Mn∏
i=1

ρ(yi|n | µn, α), (6)

where Mn ≡ Mµn , yi|n is the i-th simulated particle coordinate at µn, 〈Nn〉 ≡ 〈Nµn〉, and
ρ(x | µn, α) is the solution of Eq. (3) at µ = µn and Φ given by Eqs. (4) and (5). Now a joint
Gaussian prior on the coefficients α induces a Gaussian random field prior on the space of functions
of n0, η and µ.

Eqs. (5)–(6) allow us to use the same posterior to describe the fluid on a set of µ, including dilute
(small µ) and highly structured (large µ) fluid configurations. As an example, consider a training
dataset {Dµn}Kn=1 with K = 8 integer µ-points, µ = −2 . . . 5, and Mn = 104 particle coordinates
per µ-point in a pore of width L = 8. We train two functionals: a µ-independent one with M = 0
in Eq. (5), and a linear one in µ with M = 1. Both functionals have the same form of Eq. (4)
with N1 = 3 and N2 = 8. The trained functionals are represented in Fig. 2 in terms of samples
of minimising ρ(x), for a variety of pore widths and chemical potentials outside of the training
dataset. The top and bottom plots in (a)–(c) correspond to the µ-independent model and the linear
model, respectively. Dotted curves show the MAP estimators. The uncertainty of the inferred F [ρ] is
illustrated by plotting 400 samples from the posterior (grey). The exact ρX|µ(x) is superimposed in
red and demonstrates a good agreement of the trained functionals with the ground truth.

As before, the model generalises well with the pore width L. Notice that µ-dependent model shows
significantly more confidence in its prediction than the µ-independent one, with predictive posterior
distribution forming a narrower band around the MAP estimator on the top panels than on the bottom
ones. A more subtle difference concerns the two possibilities for the test µ-points: either the chosen µ
extrapolates from the training set [Figs. 2 (a) and (b)] or interpolates it [Fig. 2(c)]. We see that during
extrapolation, µ-independent model gives slightly better MAP estimators than the linear model, in
spite of the fact that the former has higher uncertainty. Moreover, when µ interpolates the training
set, this difference between the MAP estimators of the two functionals nearly vanishes. We can
attribute the higher certainty of the linear model to its higher flexibility in fitting the dependencies.
At the same time, the slightly worse accuracy of the MAP estimator from the more complex linear
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Figure 3: Comparison of physics-informed and black-box inference at fixed µ. (a) MAP of the
physics-informed model from Eq. (4) with N1 = N2 = 6 (dashed red), and the RBF model from
Eq. (7) with Nf = 21 (blue). Both models are trained at µ = 3 and L = 8, on a fixed-µ dataset
{Dµ} of size M = 5× 103, represented by the histogram. (b) Energy distance to ground-truth [6].

model, observed during extrapolation suggests over-fitting. The actual Φ(n0, η) is independent of µ,
so artificially relaxing the µ-dependence may fit the training set with more certainty, but sacrifices
generalisation.

3 Data efficiency

We assess the data efficiency of physics-informed inference approach by comparing it to a baseline
black-box mixture model of Gaussian radial basis functions (RBF):

ρ(x | µ) =

Nf∑
i=1

αi(µ) exp
(
−(x− pi)2/w2

i (µ)
)
, (7)

where αi(µ) ≥ 0 for all i and
∑Nf
j αj(µ) = 1. The Gaussian means pi are fixed to be equispaced

inside the computational domain to speed-up the training. For the fixed-µ model, we place a Gaussian
prior on wi and a rectified prior distribution with mean 1 and variance 0.1 on αi, forcing αi to be
non-negative. Fig. 3 illustrates our comparison.

In Fig. 3(a) we superimpose two MAP estimators in the fixed-µ setting: the RBF distribution (blue)
and the DFT minimiser of the MAP functional (red dashed). Both models were trained on the
same small dataset, represented by the histogram. As we saw earlier with similar examples, the
physics-informed model performs very well in low-data regimes. In fact, the physics-informed ρ(x)
visually coincides with the ground truth ρX|µ(x) everywhere, allowing us to omit the plot of ρX|µ(x).
The quality of the RBF model is comparatively worse, as seen, e.g., by its lack of symmetry. There is
simply not enough training data to produce an equally good representation of ρX|µ(x). Increasing
the data size will improve the quality of the black-box model. We quantify this in Fig. 3(b) in
terms of the energy distance [6], ∆E, between ρX|µ(x) and ρ(x), as a function of the training data
size. Observe that the physics-informed model remains at least an order of magnitude closer to the
ground truth than the black-box model. Additionally, since important physical relationships are built
into the physics-informed model, even when the inferred model becomes inaccurate, it still yields
symmetric distributions which satisfy statistical-mechanical sum-rules [1]. For the same reason, the
physics-informed model by construction generalises with L. We obviously cannot expect this from
the black-box model. The dependence on L must be explicitly built into Eq. (7), and then even more
data, spanning different L, will be needed for training. In the end, the cost of training a black-box
model may be several orders of magnitude higher than training a physics-informed model.

4 Conclusion

We presented an inference methodology for finding the distributional model of the free energy of
a many-body system using simulated particle trajectories. Considering the prototypical case of a
one-dimensional fluid was a natural first step for physics-informed inference in classical many-body
systems. The generalisation to higher dimensions is conceptually straightforward by considering
functionals of the form Φ({ni}). However, to describe phase transitions the parametric form of
Φ({ni}) should allow for singular behaviour.
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Broader Impact

Classical density functional theory offers an incredibly versatile and user-friendly framework for modelling
many-body systems. Yet, its potential for widespread adoption across a variety of soft-matter fields, including
biology, nanofluidics and chemical engineering – to name but a few – is held back by the simple fact that
accurate free energy functionals are known only for a handful of rather special systems. Present work is, to our
knowledge, a first attempt to develop an algorithmic data-driven inference method for classical DFT functionals,
equipped with full uncertainty quantification. Our approach yields a humanly interpretable analytic description
of a many-body system with complex interactions in terms of a distribution over possible Helmholtz free energy
functionals. The only required input is small amounts of particle simulation data. Using the Born-Oppenheimer
principle, intermolecular effects happening on different spatiotemporal scales can be decoupled and accounted for
separately by, e.g. coarse-graining complicated interactions and using perturbation expansions. This fact makes
our work readily applicable to the broad range of problems dealing with atomistic and continuum mechanical
descriptions of soft condensed matter. In a broader scope, our results can be extended to the development
of an inferential modelling framework for many-body systems, where small-scale simulations are used to
algorithmically capture essential patterns of collective behaviour. Thus, yielding an analytic description that
can be scaled to system sizes beyond simulation capabilities. Broader societal consequences are associated
with potential positive impact on nano-technology industries, such as chemical and bio-engineering, design and
operation of miniature lab-on-a-chip chemical reactors and nanofluidic devices, DNA separation, vapor-liquid-
solid growth of semiconductor nanowires, design of nano-patterned superhydrophobic surfaces and targeted
drug delivery.

6


	Introduction
	Bayesian inference procedure
	Data efficiency
	Conclusion

