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1 Introduction

Computationally intractable tasks are ubiquitous in physics and optimization [1, 2, 3, 4]. One of
the most prominent examples is finding the ground state energy of a many-body quantum system.
Whereas variational approaches (i.e., coming up with an ansatz that contains a good approximate to
the optimal solution) are the most direct tool to find such a good solution [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15], they generally suffer from two important drawbacks: (i) non-convexity of the cost function
and/or the feasible set and (ii) they provide only a bound to the optimal solution, by construction,
without the direct possibility of knowing how close the variational solution is to the global optimum.
On the other hand, relaxation techniques, where e.g. a combinatorial problem is approximated by
a continuous parameter problem which allows for more efficient solution methods, provide lower
bounds to the solutions [16, 17, 18, 19]. Hence, a combination of a good variational ansatz and
a good relaxation of the problem provides a bounded interval containing the optimal solution and
therefore a means to control the error in the optimization (see Fig. 1a).

In this work, we propose a novel approach combining the power of relaxation techniques with
deep reinforcement learning (DRL) [20, 21, 22] to find the best possible relaxations given a limited
computational budget. We specifically apply it to the problem of bounding ground state energies.
Relaxation techniques are widely used in quantum information processing. In many cases of interest,
given an optimization problem, we consider a set of constraints that must be fulfilled by the solution.
We can solve the resulting constrained optimization problem through semidefinite programming
(SdP). Relaxing the constraints simplifies the problem, but it may yield looser bounds. Some "smart"
relaxations, however, provide better approximations to the optimal solution than others of similar
complexity [17, 23]. Hence, it becomes paramount to find the best trade-off between accuracy and
simplicity. Nevertheless, a successful search often requires leveraging upon specific knowledge about
the problem at hand. Conversely, the analysis of an efficient set of constraints is more likely to reveal
useful insight about the system’s properties [24, 25, 26].

We propose a systematic method to search for an optimal set of constrains within a given com-
putational budget. We depict a scheme in which we distinguish two main parts. On one hand, a
DRL-based agent can input a set of constraints into a black box. On the other hand, the black
box solves the associated problem relaxation through SdP (Fig. 1b). The agent can strengthen or
loosen the constraints obtaining a reward that depends on the quality of the resulting bound and
its computational cost. This way, the agent is trained to obtain the best possible bound within a
computational budget, while using the least amount of resources. Notice that this is a completely
unsupervised process in which the agent is absolutely agnostic to the physical problem at hand.

∗Corresponding author: tura@lorentz.leidenuniv.nl

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



(a) Variational and re-
laxation bounds

(b) Framework diagram

R

1

0

β βmax
pbest

pworst

Better 
bound

Higher 
parametres=

β βmax<

(c) Reward diagram

Figure 1: (a) Values of the objective function. In black, the optimal (unknown) value. In red, the
different minimums obtained by different variational methods. The smaller their value, the better is
the bound. In purple, different minimums obtained by relaxation techniques. The greater their value,
the more accurate is their associated certificate. In gray, the uncertainty region where the optimal
solution lies, given by the best variational and the best certificate obtained so far. (b) Schematic
representation of the reinforcement learning framework. First, the agent observes the state: a 1-hot
encoding of the active constraints. Given the observation, it estimates the Q-values associated to the
possible actions with the DQN. Then, the agent decides which action to take according to an ε-greedy
policy, which results into a new set of constraints, bringing the agent to a new state. Finally, the black
box solves the SdP associated to the new state, providing the agent with a reward, whose parts are
illustrated in (c).

Our aim is to understand up to which extent such a fully unsupervised approach may help us study
physical systems inferring, for instance, their phase diagrams.

Our procedure is applied in the context of finding ground state energies of local Hamiltonians. We
showcase the validity of the method in various scenarios where the ground states have different
properties. Besides, our framework allows the straightforward implementation of other optimization
algorithms, such as classical simulated annealing and breadth first search, which we benchmark
against the DRL approach. Finally, we study the effect of the so-called transfer learning [27] between
Hamiltonians, exploiting the experience obtained by the agent solving previous problems in solving
new ones.

We highlight that our methods, while presented on the context of ground state energy approximation,
are actually of much broader applicability, ranging, e.g. from entanglement witnesses optimization
[28, 29, 30, 31] to device-independent quantum information processing tasks.

2 Methods

In the interest of simplicity, we shall consider a running example. Let us therefore fix an optimization
task, which is to find the ground state energy E0 of a quantum local Hamiltonian H =

∑m
i=1Hi. The

Hamiltonian H acts on n qubits, and it is a sum of terms Hi, each of which acts on at most k = O(1)
qubits. The sum of H has therefore m = O(poly(n)) terms. The support of Hi, denoted supp(Hi)
is the set of qubits where Hi acts non-trivially. The supports of the different Hi may overlap; i.e.,
supp(Hi) ∩ supp(Hj) may not be empty.

To find E0, one can try to directly construct a quantum state that has E0 energy with respect to
H . Therefore, a first approach is to parameterize a family of quantum states |ψ(θ)〉 exploiting
some known properties of H . We can safely assume the parameterization yields a valid, normalized
quantum state for any value of the parameters θ. Additionally, by construction, 〈ψ(θ)|H |ψ(θ)〉 ≥
E0 for all θ. Let us denote

γ = min
θ
〈ψ(θ)|H |ψ(θ)〉 , (1)

which satisfies E0 ≤ γ by construction. An example of such a parameterization would be to describe
|ψ(θ)〉 as a tensor network contraction, which exploits the locality properties of H , which limit the
entanglement present in its ground state [6, 32, 33, 34].
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Complexity theory results strongly suggest that finding, or even approximating, the ground state
energy of a local Hamiltonian is a hard task, even for a quantum computer [1, 2, 3]. Furthermore,
this hardness persists in physically relevant instances [4]. Observe that even if we found the actual
solution |ψ(θ)〉 we cannot prove, solely from that, that it is the global minimum [15].

It is therefore highly desirable to obtain a bound from the other side; i.e., a value β for which one
can prove E0 ≥ β. This would guarantee E0 ∈ [β, γ] and, therefore, help determine whether it is
worth to refine the search depending on |γ − β| < ε. However, for a proof of the type E0 ≥ β,
constructing examples of the form |ψ(θ)〉 is not good enough, and we need a proof that is satisfied
by, at least, all valid quantum states. Roughly speaking, we might want to find a proof that works on
a set containing all quantum states if this makes it simpler. Such a proof is referred to as a certificate,
and it is typically obtained by numerical means. Semidefinite programs (SdP) are natural tools to
obtain such certificates, which we use in our work.

2.1 SdP-based relaxations

A common technique to construct a relaxation for the local Hamiltonian problem is via the triangle
inequality [35, 36, 37, 38]:

min
ρ

Tr[ρH] ≥
∑
i

min
ρi

Tr[ρiĤi], (2)

where ρ and ρi are density matrices acting on the support of H and Hi respectively. Note that i refers
to a Hamiltonian term and it has nothing to do with the i-th party. Furthermore, in eq. (2), the Ĥi are
sums of local terms Hi of H , grouped so that supp(Ĥi) is as large as possible while still allowing
for computation of their minimal eigenvalue. This obviously depends on the available computational
resources.

Let us observe that the RHS in eq. (2) is a sum of minima, where each minimum is carried out
independently. Because of this independence it is false in general that different ρi are mutually
compatible; i.e., that there exists a global state ρ such that each ρi is the corresponding partial trace
of ρ. The converse is true however: every valid quantum state ρ has an associated set of partial traces
ρi, but given a set of ρi, a global ρ may not exist. This is what proves the inequality eq. (2).

The minimization of the RHS of eq. (2) is equivalent to solving the following semidefinite program:

β∅ := min{ρi}
∑
i Tr[ρiĤi]

s.t. ρi � 0
Tr[ρi] = 1

(3)

Since there is no mutual compatibility enforced among the ρi, and each is treated independently, the
triangle inequality eq. (2) constitutes what we call a trivial relaxation. A natural way to strengthen
the relaxation is to impose further restrictions on the collection of possible ρi, in such a way that any
quantum state would also satisfy them. The most stringent restriction possible is to directly ask that
{ρi} come from a global quantum state. This would be equivalent to finding the value of E0, which
is QMA-complete [1, 2, 3]. Furthermore, it is strongly connected to solving the so-called quantum
marginal problem (QMP), which is also QMA-complete [39]. The QMP has been solved completely
in very rare instances, such as the global state being symmetric [19] or for the case of one-body
marginals [40]. Nevertheless, the SdP based formulation eq. (3) motivates a hierarchy of relaxations
based on solving the QMP up to some degree of compatibility. The degree of compatibility that uses
the available computational resources most efficiently is to be determined by the Agent.revte

2.2 Reinforcement learning

The set of constraints the agent can add to eq. (3) correspond to defining reduced density matrices of
subsets of qubits and imposing mutual compatibility constraints among them (i.e., relevant partial
traces should coincide). Hence, the set of constraints forms a partially ordered set (poset). We frame
the optimization problem of finding the best set of constraints within a limited computational budget
as a Markov decision process (MDP). In such a scheme we distinguish two parts: on the one hand, a
black box that computes the associated SdP relaxation to a set of constraints. On the other hand, an
agent that decides which constraints to try, strengthening or loosening them depending on perceived
rewards.
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Figure 2: Benchmark of the performance of the three optimization algorithms: BFS, MC and
DQN. The algorithms are evaluated in: (a) small and (b) big computational budget. The lines are
discontinued when the number of state visits needed to hit 95% exceeds the time limit allocated.

The state space of the agent consists of states that encode the active constraints. These are vectors with
one-hot-encodings of the constraints into reduced density matrices. The actions take the agent from
one state to another. These actions flip bits in the state vector thus adding or removing constraints
under certain restrictions (e.g. memory/time consumption to obtain the associated certificate). The
reward function defines the optimization goal for the agent. It depends on the energy bound β
obtained by the black box and its computational cost p. The latter is determined by the number of
variables and constraints in the SdP [41, 42]. Without prior knowledge, the agent relies on a set of
references that are updated with the state-space exploration, keeping track of the best βmax and worst
βmin energy bounds obtained so far. The reward function is

R(β, p) =
pbest

pworst
·


pworst
p if β = βmax(
β−βmin

βmax−βmin

)d
otherwise,

(4)

where d is a fixed exponent that controls the shape of the line (β−βmin)/(βmax−βmin). Notice that
pworst ≥ pbest and, therefore, pworst/p ≥ 1. The optimization problem is solved through reinforcement
learning [20, 21, 22]. More precisely, we use Q-learning [43] in the context of function approximation
leveraging a deep Q-network (DQN) [44] with double Q-learning [45]. The agent follows an ε-greedy
policy.

3 Results

We showcase the results with the following problem: finding the ground state energy of the 1D
quantum Heisenberg XY model [46] with periodic boundary conditions, which is described by

H =
n−1∑
i=0

Ji(σ
x
i σ

x
i+1 + σyi σ

y
i+1) +

n−1∑
i=0

Biσ
z
i . (5)

We limit the agent’s memory so it can only allocate half of the possible three-body (neighboring)
constraints. We further fix the interactions to be Ji = i mod 3 and Bi = 1 in order to know the
optimal set of constraints beforehand (thus to compare different methods with the optimal solution).
We benchmark the performance of the DQN-based agent against a breadth first search (BFS) in the
space of constraints as well as a Monte-Carlo (MC) optimization for different system sizes (Fig. 2).

• We observe in Fig. 2(a) that for small budget the DQN agent is more efficient than MC and
it is more efficient than BFS in all instances. For a bigger budget, allowing for all the 3-body
constraints, the difference is even more notable (Fig. 2(b)).

• Finally, we also study the effect of transfer learning within the same Hamiltonian phase,
where we observed approximately a 5 times speedup within the same phase, which goes
into no gain gradually as one crosses a phase transition and enters a new Hamiltonian phase
in a continuous way: Since energy changes continuously, the same certificate in the learnt
phase still obtains good rewards in the vicinity of the quantum phase transition.
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These results suggest that more advanced AI and RL methods may provide substantial improvements
for practical applications of relaxation methods. Particularly, for the problems of finding ground
energies of local quantum Hamiltonians which is a quintessential problem in modern Physics.

Broader Impact
• Who can benefit from this research: This work constitutes basic research, thus it can benefit

the scientific community as a whole. In particular, the fields of condensed matter, quantum
information and optimization.

• Who can be put at disadvantage from this research: Does not apply.
• What are the consequences of failure of the system. Does not apply. The relaxation obtained

by the agent is always a valid certificate, by construction, no matter how poorly the agent
performs in finding a resource-efficient one.

• Does the task/method leverage biases in the data? Does not apply. The agent is completely
agnostic to the model it is learning.
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