Certificates of many-body properties assisted by machine learning

Borja Requena¹, Gorka Muñoz-Gil¹, Maciej Lewenstein¹,², Vedran Dunjko³, Jordi Tura⁴,⁵

¹ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
²ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
³LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
⁴Max-Planck-Institut für Quantenoptik, D-85748 Garching
⁵Instituut Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, Netherlands

1 Introduction

Computationally intractable tasks are ubiquitous in physics and optimization [1][2][3][4]. One of the most prominent examples is finding the ground state energy of a many-body quantum system. Whereas variational approaches (i.e., coming up with an ansatz that contains a good approximate to the optimal solution) are the most direct tool to find such a good solution [5][6][7][8][9][10][11][12][13][14][15], they generally suffer from two important drawbacks: (i) non-convexity of the cost function and/or the feasible set and (ii) they provide only a bound to the optimal solution, by construction, without the direct possibility of knowing how close the variational solution is to the global optimum. On the other hand, relaxation techniques, where e.g. a combinatorial problem is approximated by a continuous parameter problem which allows for more efficient solution methods, provide lower bounds to the solutions [16][17][18][19]. Hence, a combination of a good variational ansatz and a good relaxation of the problem provides a bounded interval containing the optimal solution and therefore a means to control the error in the optimization (see Fig. 1a).

In this work, we propose a novel approach combining the power of relaxation techniques with deep reinforcement learning (DRL) [20][21][22] to find the best possible relaxations given a limited computational budget. We specifically apply it to the problem of bounding ground state energies. Relaxation techniques are widely used in quantum information processing. In many cases of interest, given an optimization problem, we consider a set of constraints that must be fulfilled by the solution. We can solve the resulting constrained optimization problem through semidefinite programming (SdP). Relaxing the constraints simplifies the problem, but it may yield looser bounds. Some "smart" relaxations, however, provide better approximations to the optimal solution than others of similar complexity [17][23]. Hence, it becomes paramount to find the best trade-off between accuracy and simplicity. Nevertheless, a successful search often requires leveraging upon specific knowledge about the problem at hand. Conversely, the analysis of an efficient set of constraints is more likely to reveal useful insight about the system’s properties [24][25][26].

We propose a systematic method to search for an optimal set of constrains within a given computational budget. We depict a scheme in which we distinguish two main parts. On one hand, a DRL-based agent can input a set of constraints into a black box. On the other hand, the black box solves the associated problem relaxation through SdP (Fig. 1b). The agent can strengthen or loosen the constraints obtaining a reward that depends on the quality of the resulting bound and its computational cost. This way, the agent is trained to obtain the best possible bound within a computational budget, while using the least amount of resources. Notice that this is a completely unsupervised process in which the agent is absolutely agnostic to the physical problem at hand.

*Corresponding author: tura@lorentz.leidenuniv.nl

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.
Our aim is to understand up to which extent such a fully unsupervised approach may help us study physical systems inferring, for instance, their phase diagrams.

Our procedure is applied in the context of finding ground state energies of local Hamiltonians. We showcase the validity of the method in various scenarios where the ground states have different properties. Besides, our framework allows the straightforward implementation of other optimization algorithms, such as classical simulated annealing and breadth first search, which we benchmark against the DRL approach. Finally, we study the effect of the so-called transfer learning [27] between Hamiltonians, exploiting the experience obtained by the agent solving previous problems in solving new ones.

We highlight that our methods, while presented on the context of ground state energy approximation, are actually of much broader applicability, ranging, e.g. from entanglement witnesses optimization [28, 29, 30, 31] to device-independent quantum information processing tasks.

2 Methods

In the interest of simplicity, we shall consider a running example. Let us therefore fix an optimization task, which is to find the ground state energy E_0 of a quantum local Hamiltonian $H = \sum_{i=1}^{m} H_i$. The Hamiltonian H acts on n qubits, and it is a sum of terms H_i, each of which acts on at most $k = O(1)$ qubits. The sum of H has therefore $m = O(\text{poly}(n))$ terms. The support of H_i, denoted $\text{supp}(H_i)$ is the set of qubits where H_i acts non-trivially. The supports of the different H_i may overlap; i.e., $\text{supp}(H_i) \cap \text{supp}(H_j)$ may not be empty.

To find E_0, one can try to directly construct a quantum state that has E_0 energy with respect to H. Therefore, a first approach is to parameterize a family of quantum states $|\psi(\theta)\rangle$ exploiting some known properties of H. We can safely assume the parameterization yields a valid, normalized quantum state for any value of the parameters θ. Additionally, by construction, $\langle \psi(\theta) | H | \psi(\theta) \rangle \geq E_0$ for all θ. Let us denote

$$\gamma = \min_{\theta} \langle \psi(\theta) | H | \psi(\theta) \rangle,$$

which satisfies $E_0 \leq \gamma$ by construction. An example of such a parameterization would be to describe $|\psi(\theta)\rangle$ as a tensor network contraction, which exploits the locality properties of H, which limit the entanglement present in its ground state [6, 32, 33, 34].
Complexity theory results strongly suggest that finding, or even approximating, the ground state energy of a local Hamiltonian is a hard task, even for a quantum computer \cite{1, 2, 3}. Furthermore, this hardness persists in physically relevant instances \cite{4}. Observe that even if we found the actual solution $|\psi(\theta)\rangle$ we cannot prove, solely from that, that it is the global minimum \cite{15}.

It is therefore highly desirable to obtain a bound from the other side; i.e., a value β for which one can prove $E_0 \geq \beta$. This would guarantee $E_0 \in [\beta, \gamma]$ and, therefore, help determine whether it is worth to refine the search depending on $|\gamma - \beta| < \varepsilon$. However, for a proof of the type $E_0 \geq \beta$, constructing examples of the form $|\psi(\theta)\rangle$ is not good enough, and we need a proof that is satisfied by, at least, all valid quantum states. Roughly speaking, we might want to find a proof that works on a set containing all quantum states if this makes it simpler. Such a proof is referred to as a certificate, and it is typically obtained by numerical means. Semidefinite programs (SdP) are natural tools to obtain such certificates, which we use in our work.

2.1 SdP-based relaxations

A common technique to construct a relaxation for the local Hamiltonian problem is via the triangle inequality \cite{35, 35, 36, 38}:

$$\min_{\rho} \text{Tr}[\rho H] \geq \sum_i \min_{\rho_i} \text{Tr}[\rho_i \hat{H}_i],$$ \hspace{1cm} (2)

where ρ and ρ_i are density matrices acting on the support of H and \hat{H}_i respectively. Note that i refers to a Hamiltonian term and it has nothing to do with the i-th party. Furthermore, in eq. (2), the \hat{H}_i are sums of local terms H_i of H, grouped so that $\text{supp}(\hat{H}_i)$ is as large as possible while still allowing for computation of their minimal eigenvalue. This obviously depends on the available computational resources.

Let us observe that the RHS in eq. (2) is a sum of minima, where each minimum is carried out independently. Because of this independence it is false in general that different ρ_i are mutually compatible; i.e., that there exists a global state ρ such that each ρ_i is the corresponding partial trace of ρ. The converse is true however: every valid quantum state ρ has an associated set of partial traces ρ_i, but given a set of ρ_i, a global ρ may not exist. This is what proves the inequality eq. (2).

The minimization of the RHS of eq. (2) is equivalent to solving the following semidefinite program:

$$\beta_0 := \min_{\{\rho_i\}} \sum_i \text{Tr}[\rho_i \hat{H}_i] \quad \text{s.t.} \quad \rho_i \geq 0, \quad \rho_i \geq 0 \in \beta, \gamma \quad \text{and} \quad \text{Tr}[\rho_i] = 1$$ \hspace{1cm} (3)

Since there is no mutual compatibility enforced among the ρ_i, and each is treated independently, the triangle inequality eq. (2) constitutes what we call a trivial relaxation. A natural way to strengthen the relaxation is to impose further restrictions on the collection of possible ρ_i, in such a way that any quantum state would also satisfy them. The most stringent restriction possible is to directly ask that $\{\rho_i\}$ come from a global quantum state. This would be equivalent to finding the value of E_0, which is QMA-complete \cite{1, 2, 3}. Furthermore, it is strongly connected to solving the so-called quantum marginal problem (QMP), which is also QMA-complete \cite{39}. The QMP has been solved completely in very rare instances, such as the global state being symmetric \cite{19} or for the case of one-body marginals \cite{40}. Nevertheless, the SdP based formulation eq. (3) motivates a hierarchy of relaxations based on solving the QMP up to some degree of compatibility. The degree of compatibility that uses the available computational resources most efficiently is to be determined by the Agent.rente.

2.2 Reinforcement learning

The set of constraints the agent can add to eq. (3) correspond to defining reduced density matrices of subsets of qubits and imposing mutual compatibility constraints among them (i.e., relevant partial traces should coincide). Hence, the set of constraints forms a partially ordered set (poset). We frame the optimization problem of finding the best set of constraints within a limited computational budget as a Markov decision process (MDP). In such a scheme we distinguish two parts: on the one hand, a black box that computes the associated SdP relaxation to a set of constraints. On the other hand, an agent that decides which constraints to try, strengthening or loosening them depending on perceived rewards.
The state space of the agent consists of states that encode the active constraints. These are vectors with one-hot-encodings of the constraints into reduced density matrices. The actions take the agent from one state to another. These actions flip bits in the state vector thus adding or removing constraints under certain restrictions (e.g. memory/time consumption to obtain the associated certificate). The reward function defines the optimization goal for the agent. It depends on the energy bound β obtained by the black box and its computational cost p. The latter is determined by the number of variables and constraints in the SdP [41, 42]. Without prior knowledge, the agent relies on a set of references that are updated with the state-space exploration, keeping track of the best β_{max} and worst β_{min} energy bounds obtained so far. The reward function is

$$R(\beta, p) = \frac{p_{\text{best}}}{p_{\text{worst}}} \cdot \begin{cases} p_{\text{best}} & \text{if } \beta = \beta_{\text{max}} \\ \left(\frac{\beta - \beta_{\text{min}}}{\beta_{\text{max}} - \beta_{\text{min}}}\right)^d & \text{otherwise} \end{cases} \quad (4)$$

where d is a fixed exponent that controls the shape of the line $(\beta - \beta_{\text{min}})/(\beta_{\text{max}} - \beta_{\text{min}})$. Notice that $p_{\text{worst}} \geq p_{\text{best}}$ and, therefore, $p_{\text{worst}}/p \geq 1$. The optimization problem is solved through reinforcement learning [20, 21, 22]. More precisely, we use Q-learning [43] in the context of function approximation leveraging a deep Q-network (DQN) [44] with double Q-learning [45]. The agent follows an ϵ-greedy policy.

3 Results

We showcase the results with the following problem: finding the ground state energy of the 1D quantum Heisenberg XY model [46] with periodic boundary conditions, which is described by

$$H = \sum_{i=0}^{n-1} J_i (\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y) + \sum_{i=0}^{n-1} B_i \sigma_i^z. \quad (5)$$

We limit the agent’s memory so it can only allocate half of the possible three-body (neighboring) constraints. We further fix the interactions to be $J_i = i \mod 3$ and $B_i = 1$ in order to know the optimal set of constraints beforehand (thus to compare different methods with the optimal solution). We benchmark the performance of the DQN-based agent against a breadth first search (BFS) in the space of constraints as well as a Monte-Carlo (MC) optimization for different system sizes (Fig. 2).

- We observe in Fig. 2(a) that for small budget the DQN agent is more efficient than MC and it is more efficient than BFS in all instances. For a bigger budget, allowing for all the 3-body constraints, the difference is even more notable (Fig. 2(b)).
- Finally, we also study the effect of transfer learning within the same Hamiltonian phase, where we observed approximately a 5 times speedup within the same phase, which goes into no gain gradually as one crosses a phase transition and enters a new Hamiltonian phase in a continuous way: Since energy changes continuously, the same certificate in the learnt phase still obtains good rewards in the vicinity of the quantum phase transition.
These results suggest that more advanced AI and RL methods may provide substantial improvements for practical applications of relaxation methods. Particularly, for the problems of finding ground energies of local quantum Hamiltonians which is a quintessential problem in modern Physics.

Broader Impact

- **Who can benefit from this research:** This work constitutes basic research, thus it can benefit the scientific community as a whole. In particular, the fields of condensed matter, quantum information and optimization.
- **Who can be put at disadvantage from this research:** Does not apply.
- **What are the consequences of failure of the system:** Does not apply. The relaxation obtained by the agent is always a valid certificate, by construction, no matter how poorly the agent performs in finding a resource-efficient one.
- **Does the task/method leverage biases in the data:** Does not apply. The agent is completely agnostic to the model it is learning.

Acknowledgments

ICFO group acknowledges support from ERC AdG NOQIA, Spanish Ministry of Economy and Competitiveness (“Severo Ochoa” program for Centres of Excellence in RD (CEX2019-000910-S), Plan National FIDUEA PID2019-106901GB-I00/10.13039 / 501100011033, FPI, Fundació Privada Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, CERCA program, QuantumCAT U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020), MINECO-EU QUANTERA MAQS (funded by State Research Agency (AEI) PCI2019-111828-2 / 10.13039/501100011033), EU Horizon 2020 FET-OPEN OPTOLogic (Grant No 899794), and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. This work was in part supported by the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (project number 024.003.037). This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number 414325145 in the framework of the Austrian Science Fund (FWF): SFB F71. J. T. thanks the Alexander von Humboldt foundation for support.

References

