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Abstract

Including prior knowledge is important for effective machine learning models in
physics, and is usually achieved by explicitly adding loss terms or constraints
on model architectures. Prior knowledge embedded in the physics computation
itself rarely draws attention. We show that solving the Kohn-Sham equations
when training neural networks for the exchange-correlation functional provides an
implicit regularization that greatly improves generalization. Two separations suffice
for learning the entire one-dimensional H2 dissociation curve within chemical
accuracy, including the strongly correlated region. Our models also generalize to
unseen types of molecules and overcome self-interaction error.

1 Introduction

Differentiable programming [1] is a general paradigm of deep learning, where parameters in the
computation flow are trained by gradient-based optimization. Based on the enormous development
in automatic differentiation libraries [2–5], hardware accelerators [6] and deep learning [7], this
emerging paradigm is relevant for scientific computing. It keeps rigorous components where we
have extremely strong physics prior knowledge and well-established numerical methods [8] and
parameterizes the approximation by a neural network, which can approximate any continuous
function [9]. Recent highlights include discretizing partial differential equations [10], structural
optimization [11], sampling equilibrium configurations [12], differentiable molecular dynamics [13],
differentiable programming tensor networks [14], optimizing basis sets in Hartree-Fock [15] and
variational quantum Monte Carlo [16–18].
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Density functional theory (DFT), an approach to electronic structure problems, took an enormous
step forward with the creation of the Kohn-Sham (KS) equations [19], which greatly improves
accuracy [20–22]. The results of solving the KS equations are reported in tens of thousands of papers
each year [23]. Given an approximation to the exchange-correlation (XC) energy, the KS equations
are solved self-consistently. Results are limited by the quality of such approximations, and a standard
problem of KS-DFT is to calculate accurate bond dissociation curves [24]. The difficulties are an
example of strong correlation physics as electrons localize on separate nuclei [25].

Naturally, there has been considerable interest in using machine learning (ML) methods to improve
DFT approximations. Initial work [26, 27] focused on the KS kinetic energy, as a sufficiently accurate
approximation would allow by-passing the solving of the KS equations [28, 29]. For XC, recent
works focus on learning the XC potential (not functional) from inverse KS [30], and use it in the
KS-DFT scheme [31–34]. An important step forward was made last year, when it was shown that a
neural network could find functionals using only three molecules, by training on both energies and
densities [35], obtaining accuracy comparable to human-designed functionals, and generalizing to
yield accurate atomization energies of 148 small molecules [36]. But this pioneering work does not
yield chemical accuracy, nor approximations that work in the dissociation limit. Moreover, it uses
gradient-free optimization which usually suffers from poor convergence behavior on the large number
of parameters used in modern neural networks [37–39].

Here, we show that all these limitations are overcome by incorporating the KS equations themselves
into the neural network training by backpropagating through their iterations – a KS regularizer
(KSR) to the ML model. In a traditional KS calculation, the XC is given, the equations are cycled
to self-consistency, and all previous iterations are ignored in the final answer. In other ML work,
functionals are trained on either energies alone [40–43], or even densities [32, 33, 44], but only
after convergence. By incorporating the KS equations into the training, thereby learning the relation
between density and energy at every iteration, we find accurate models with very little data and much
greater generalizability. More details on experiments and discussions are available in the full paper.

2 Kohn-Sham self-consistent calculations as a differentiable program

Forward — Modern DFT finds the ground-state electronic density by solving the Kohn-Sham
equations: {

− ∇
2

2
+ vS[n](r)

}
φi(r) = εiφi(r). (1)

The electronic density is obtained from occupied orbitals n(r) =
∑
i |φi(r)|2. Here vS[n](r) =

v(r) + vH[n](r) + vXC[n](r) is the KS potential consisting of the external one-body potential and
the density-dependent Hartree (H) and XC potentials. The XC potential vXC[n](r) = δEXC/δn(r) is
the functional derivative of the XC energy functional EXC[n] =

∫
εXC[n](r)n(r)dr, where εXC[n](r)

is the XC energy per electron. The total electronic energy E is then given by the sum of the non-
interacting kinetic energy Ts[n], the external one-body potential energy V [n], the Hartree energy
U [n], and XC energy EXC[n].

The KS equations are in principle exact given the exact XC functional [19, 45], which in practice
is the only term approximated in DFT. From a computational perspective, the eigenvalue problem
of Eq. (1) is solved repeatedly until the density converges to a fixed point, starting from an initial
guess. We use linear density mixing [46] to improve convergence, n(in)

k+1 = n(in)

k + α(n(out)

k − n(in)

k ).
Figure 1(a) shows the unrolled computation flow. We approximate the XC energy per electron
using a neural network εXC,θ[n], where θ represents the trainable parameters. Together with the
self-consistent KS iterations in Figure 1(b), the combined computational graph resembles a recurrent
neural network [47] or deep equilibrium model [48] with additional fixed computational components.
Density mixing has the same form as residual connections in deep neural networks [49]. In addition
to improving convergence for the forward problem of KS self-consistent calculations, density mixing
helps backpropagate gradients efficiently through long computational procedures.

Backward — If the neural XC functional were exact, KS self-consistent calculations would output the
exact density and the intermediate energies over iterations would converge to the exact energy. This
intention can be translated into a loss function and the neural XC functional can be updated end-to-
end by backpropagating through the KS self-consistent calculations. This procedure differentiates
through KS calculations and is general regardless of the dimensionality of the system. Throughout,
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experiments are performed in one dimension where accurate quantum solutions could be relatively
easily generated via density matrix renormalization group (DMRG) [50]. We design the loss function
as an expectation E over training molecules,

L(θ) =Etrain

[∫
dx(nKS − nDMRG)

2/Ne

]
︸ ︷︷ ︸

density lossLn

+Etrain

[
K∑
k=1

wk(Ek − EDMRG)
2/Ne

]
,︸ ︷︷ ︸

energy lossLE

where Ne is the number of electrons. Ln minimizes the difference between the final density with
the exact density. LE optimizes the trajectory of energies in total K iterations. The neural XC
functional needs to not only output accurate εXC in each iteration, but also drive the iterations to
quickly converge to the exact energy. The trajectory loss also makes backpropagation more efficient
by directly flowing gradients to early iterations [51]. wk are arbitrary non-negative weights associated
with each iteration. The optimal neural network parameters are selected with minimal mean absolute
energy per electron on the validation set.

Neural networks with physics intuition tailored for XC — Hundreds of useful XC functional approx-
imations have been proposed by humans [52]. Here we build a neural XC functional with several
differentiable components with physics intuition tailored for XC in Figure 1(c). A global convolution
layer captures the long range interaction, G(n(x), ξp) = 1

2ξp

∫
dx′n(x′) exp(−|x − x′|/ξp). Note

two special cases retrieve known physics quantities, Hartree energy density G(n(x), κ−1) ∝ εH and
electronic density G(n(x), 0) = n(x). Global convolution contains multiple channels and ξp of each
channel is trainable to capture interaction in different scales. Although the rectified linear unit [53] is
popular, we use the sigmoid linear unit (SiLU) [54] (or swish [55]) f(x) = x/(1+exp(−x)) because
the infinite differentiability of SiLU guarantees the smoothness of vXC, the first derivative, and the
second and higher order derivatives of the neural network used in the L-BFGS training [56]. We do not
enforce a specific choice of εXC (sometimes called a gauge [57]), but we do enforce some conditions,
primarily to aid convergence of the algorithm. We require εXC to vanish whenever the density does,
and that it be negative if at all possible. We achieved the former using the linearity of SiLU near the
origin and turning off the bias terms in convolution layers. We softly impose the latter by a negative
transform layer at the end, where a negative SiLU makes most output values negative. Finally, we
design a self-interaction gate (SIG) that mixes in a portion of −εH to cancel the self-interaction error,
ε(out)
XC = ε(in)

XC (1− β)− εHβ. The portion is a gate function β(Ne) = exp(−(Ne − 1)2/σ2). When
Ne = 1, then ε(out)

XC = −εH. For more electrons, σ can be fixed or adjusted by the training algorithm
to decide the sensitivity to Ne. For H2 as R→∞, εXC tends to a superposition of the negative of the
Hartree energy density at each nucleus and approaches half that for H+

2 .

3 Experiments

Our results are illustrated in Figure 2, which is for a one-dimensional mimic of H2 designed for
testing electronic structure methods [58]. The distribution of curves of the ML model directly
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Figure 1: (a) KS-DFT as a differentiable program. Black arrows are the conventional computation
flow of KS self-consistent calculations with linear density mixing (purple diamonds). The gradients
flow along red dashed arrows to minimize the energy loss LE (green hexagon) and density loss
Ln (orange hexagon). (b) In each single KS iteration, neural XC functional produces vXC,θ[n] and
EXC,θ[n]. (c) Architecture of global XC functional εXC,θ[n].
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Figure 2: One-dimensional H2 dissociation curves
trained from two molecules (red diamonds). (a) A
ML model that directly predicts E from geome-
tries, clearly fails to capture the physics from very
limited data. (b) Comparison of LDA found with
KSR and that from uniform gas (brown), and (c)
same as (b) but for GGA, (d) the global XC ap-
proximation found with KSR. Enn is the nucleus-
nucleus repulsion energy. 15 sampled checkpoints
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(grey shadow), shown in lower panels.
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Figure 3: (a) t-SNE visualization [59] of density
trajectories (grey dots) sampled by KSR during
training for R = 3.84 from initial guess (cross)
to exact density (red diamond). Darker trajecto-
ries denote later optimization steps t. Densities
from each KS step in trajectories are plotted in the
corresponding highlighted colors for (b) untrained
t = 0, (c) optimal t = 220 in Figure 2, and (d)
overfitting t = 560.

predicting E from geometries (direct ML) in (a) clearly fails to capture the physics. For local density
approximation (LDA) and generalized gradient approximation (GGA) calculations similar to Nagai
et al. [35] in (b-c), the effect of the KSR yields reasonably accurate results in the vicinity of the data,
but not outside. But when a global XC functional is included in (d), chemical accuracy is achieved
for all separations including the dissociation limit.

Now we dive deeper into the outstanding generalization we observed in this simple but not easy
task. It is not surprising that direct ML model completely fails. Neural networks are usually
underdetermined systems as there are more parameters than training examples. Regularization is
crucial to improve generalization [60, 61], especially when data is limited. Most existing works
regularize models with particular physics prior knowledge by imposing constraints via feature
engineering and preprocessing [62, 63], constraints on the network [64–67] or physics-informed
loss terms [68, 69]. Another regularization strategy is to generate extra data for training using prior
knowledge: in image classification problems, data are augmented by operations like flipping and
cropping given the prior knowledge that labels are invariant to those operations [70]. However, it is
not clear how to generate extra data for physics problems solved by specific methods, e.g. electronic
structure problems with KS equations. We found that training from differentiating through KS
self-consistent calculations regularizes the model. Although the exact densities and energies of only
two separations are given, KSR naturally samples different trajectories from an initial density to the
exact density at each training step. More importantly, KSR focuses on learning an XC functional that
can lead the KS self-consistent calculations to converge to the exact density from the initial density.
Figure 3 visualizes the density trajectories sampled by KSR for one training separation R = 3.84.
The functional with untrained parameters (t = 0) samples densities near the initial guess but soon
learns to explore broadly and finds the trajectories toward the vicinity of the exact density.

In contrast, most existing ML functionals learn to predict a single step from the exact density, which
is a poor surrogate for the full self-consistent calculations [71]. These standard ML models have two
major shortcomings. First, the exact density is unknown for new systems, so the model is not expected
to behave correctly on unseen initial densities for KS calculations. Second, even if a model is trained
on many densities for single step prediction, it is not guaranteed to converge the self-consistent
calculations to a good solution. Research in imitation learning shows that error accumulation from
single steps quickly pushes the model out of its interpolation region [72]. On the other hand, since
KSR allows the model access to all the KS iterations, it learns to optimize the entire self-consistent
procedure to avoid the error accumulation from greedy optimization of single steps.

Similar results can be achieved for H4, the one-electron self-interaction error can easily be made to
vanish, and the interaction of a pair of H2 molecules can be found without any training on this type
of molecule (details in the full paper).
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4 Conclusion

Differentiable programming blurs the boundary between physics computation and ML. Here we
showed that treating KS self-consistent calculations as a differentiable program is a regularizer,
incorporating a physics prior and resulting in a remarkable generalization of the neural XC functional
trained with it. The results serve as a proof of principle to rethink physics computation in the
context of the new era of computing owing to achievements in automatic differentiation software,
hardware and theories. An exciting next step is to apply this idea to real molecules, as an end-to-
end differentiable electronic structure method. Besides finding density functionals, all heuristics
in the calculations, e.g. initial guess, density update, preconditioning, basis sets, even the entire
self-consistent calculations as a meta-optimization problem [51], can be learned and optimized while
keeping the rigorous physics and mathematics in the rest of the algorithm – getting the best of both
worlds.

Broader Impact

This research opens a promising new direction for research in density functional theory, and provides a
broadly relevant demonstration of how computational physics techniques can provide prior knowledge
that greatly improves machine learning models. The demonstration of using physical computation
itself as a regularizer, rather than physics-informed losses or constraints, will encourage further
studies on the benefits of applying the paradigm of differentiable programming to scientific research.

As an early stage theoretical research, the ethical aspects of its outcomes are not applicable. But we
would like to note one potential issue on the data – although great generalization has been shown
with limited data, models trained from the Kohn-Sham regularizer are still biased to the quality of the
training data. Future research should include topics such as more rigorous physics constraints and
robustness against adversarial attacks.
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