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Density Functional Theory

Neural XC Functionals

Learning Functionals on One-dimensional H2

Generalization to Unseen Molecules and Outlook

Density functional theory (DFT), an approach to 
electronic structure problems, took an enormous 
step forward with the creation of the Kohn-Sham 
(KS) equations, which greatly improves accuracy 
from the original DFT. The results of solving the KS 
equations are reported in tens of thousands of 
papers each year.
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Exchange-correlation (XC) energy functionals

● The only approximation in DFT
● Jacob’s ladder:

○ Local density approximation (LDA)
○ Generalized gradient approximation (GGA)
○ meta-GGA, hybrid, …

● Over 200 forms of XC exist!

Impact of DFT

● The Nobel Prize in Chemistry 1998
● Nvidia estimates that 15% of world’s 

supercomputer time is devoted to DFT 
calculations.

● Over 40k papers published per year.
● The algorithm behind many dataset for 

machine learning models: QM9, Open Catalyst 
Project, Materials Project... 

K. Burke. JCP (2012).

KS self-consistent calculation
as a differentiable program

● Differentiate the entire calculation 
end-to-end using JAX-DFT.

● Self-consistency <-> RNN
● Density mixing <-> residual connection
● Intentions behind loss function:

○ KS self-consistent calculations 
would output the exact density;

○ the intermediate energies over 
iterations would converge to the 
exact energy.

symbolic form
from physics intuition

some (or no)
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differentiable components
from physics intuition

some (or many)
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Conventional XC functionals

Neural XC functionals

Differentiable components with physics intuition

● Global convolution capturing the long range interaction

○ Two special cases

● Activation function

● Gauge on             :
○ vanishing as density goes to zero; negativity

● Self-interaction gate (SIG)

ReLU ELU Soft Plus SiLU

ML model directly 
predicting E from 
geometries.

KSR with neural XC functionals
from the first two rungs of Jacob’s 
ladder, by constraining the receptive 
field of the convolutional neural 
network. LDA has a receptive field of 
just the current point, while GGA 
includes the nearest neighbor points, 
the minimal information for computing 
the spatial gradient of the density.

XC functional with a 
global receptive field
-- fully non-local.

Not an easy task

● The regions around equilibrium and the stretched limit are dominated 
by two different physics.

● The stretched H2 are strongly correlated system, where most density 
functionals fail.

Performance

● Direct ML clearly fails to capture the physics from very limited data.
● KSR-LDA and -GGA yield reasonably accurate results near the training 

data, but not in the stretched limit.
● KSR-global achieves chemical accuracy for all separations. The 

distribution of the prediction at different checkpoints (grey curves) are 
near the true dissociation curve.

Why Kohn-Sham regularizer (KSR) works with limited data?

● Neural networks are usually underdetermined so regularization is 
crucial to improve generalization especially when data is limited.

● The physics computation procedure itself can act as a regularizer by 
sampling the density space during the training.

● Most existing ML functionals learn to predict a single iteration from 
the exact density, which is a poor surrogate for the full self-consistent 
calculations.
○ The model is not expected to behave correctly on unseen initial 

densities for KS calculations. 
○ A model trained on many densities for single iteration prediction is 

not guaranteed to converge in self-consistent calculations..
● Since KSR allows the model access to all the KS iterations, it learns to 

optimize the entire self-consistent procedure to avoid the error 
accumulation from greedy optimization of single iterations.

Outlook

● Our results for KS-DFT serve as proof of 
principle for rethinking computational 
physics in this new era with enormous 
development in
○ automatic differentiation libraries 

(JAX, PyTorch, TensorFlow),
○ hardware accelerators

(GPUs, TPUs),
○ and deep learning algorithms.

● Physics computation itself serves as an 
implicit regularizer while training the 
embedded neural networks.

● Differentiable programming blurs the 
boundary between physics computation 
and ML. Beyond density functionals, in 
principle all heuristics in DFT 
calculations, e.g., initial guess, density 
update, preconditioning, basis sets, even 
the entire self-consistent calculations as 
a meta-optimization problem.

● Code and examples: 
github.com/google-research/
google-research/tree/master/jax_dft

Dissociation curves from the neural XC 
functional trained from Ntrain= 8

● Retrain neural XC functional with KSR on Ntrain= 8 
examples each of H2 and H4 molecules.
○ full KSR: KSR with both energy and density loss
○ energy only KSR: KSR with only energy loss
○ direct ML

● Full KSR has the lowest error at minimum Ntrain= 4, 
reaching chemical accuracy at 6.

● As the size of the training set increases, energy only 
KSR reaches chemical accuracy at 10, but direct ML 
model never does (even at 20).

● Both KSR models have perfect prediction on H2
+ 

because of the self-interaction gate while direct ML 
models always have large errors.

● KSR models generalize much better than ML on unseen 
molecules H2H2.


