CONCLUSION

Astronomy is entering the era of Big Data, with a plethora of
simulations and many large-scale sky surveys. MMD and DANNs show
great promise in astronomy to:
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RESULTS

We present the performance of both domain adaptation
techniques with two base networks: DeepMerge (DM)
[3] and the more complex ResNet18 (RN18) [4]. We train our two classifier networks without any domain adaptation on the
pristine labeled source data, as well as with the addition of MMD and adversarial t-SNE

training, which also use the unlabeled target data. 2D projections of the

» Substantially improve the performance of a source-trained model on
a new and often unlabeled target domain data set and enable the
harnessing of all available data.

» Increase robustness of ML models and help with uncertainty
quantification due to modeling and inherent data characteristics.

INTRODUCTION

In astronomy we often rely on complex simulations,
which provide large labeled data sets suitable for
training machine learning (ML) models, with the
prospect of later applying these models to real
observations. Simulated and real data will always have
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through the addition of a transfer loss component to the
total loss backpropagated through a base network.

A slight decrease in source domain accuracy is expected with domain adaptation to compensate for recognition of shared
features across domains. However, we actually observed an increase in source domain accuracy due to the regularizing effect of
the additional transfer losses. Furthermore, we posit that the smaller improvements made with ResNet18 in the target domain
are the result of much greater architecture complexity, rendering training more susceptible to source overfitting.

MAXIMUM MEAN DISCREPANCY
MMD as a transfer loss works by minimizing the
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