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Introduction

Spatiotemporal big data of nonlinear system

- High-dimensional data with the immense

number of discretization points in both

space and time directions

[1]

+ Development of computational storage and resources

- How to deal with this vast amount of simulation data?®

[1] Barcelona Supercomputing Center, hitps://www.bsc.es/discover-bsc/

organisation/research-departments/large-scale-computational-fluid-dynamics

Neural network based reduced order surrogate

» Good candidate to handle complex nonlinear systems
- Neural network based reduced order model for Burger’s eq. !
* CNN-AE & LSTM can represent the advection-dominated
system while outperforming conventional linear methods
- Higher dimension problem — 2D unsteady laminar flows "!
* Next challenge: more practical manner such as 3D turbulence

- Example: turbulent channel flow at Rer =110

[2] Maulik et al., arXiv preprint, 2020
Methods

[3] Hasegawa et al., Theor. Comp. Fluid Dyn., 2020

CNN-AE/LSTM based reduced order model

Spatiotemporal high-dimensional system can be

represented by following only low dimensional
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* CNN encoder: map the flow fields into a latent space
+ LSTM: predict the next time step in the latent space recursively

- CNN decoder: reconstruct the flow fields from the latent vector

CNN-AE/LSTM based turbulent flow forecast on low-dimensional latent space
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Model configuration

» Data: turbulent channel flow obtained by direct numerical simulation

- Consider several CNN-AEs whose latent vector sizes are varied

* Large / Medium / Small / Extra small
* Train LSTM with latent vector obtained by CNN-AE

- Medium / Small

Results
Mapping ability of CNN-AE

- Vortex structure

Reference DNS
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+ “Large’ & * Medium’ model reconstruct the small structure

+ “Small’ model reconstructs only large structure

- Streamwise energy spectrum
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+ Lower wavenumber components are extracted preferentially

- Because of the repeated pooling operations inside CNN-AE

Prediction of temporal evolution via LSTM

- Vortex structure

Reference DNS
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* * Medium’ model predicts temporal evolution of flow field like DNS

Orbital behavior in the phase space
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* The trajectory of ‘Medium’ model overlaps that of the reference

+ Attractor may exist in the similar position in the phase space

Conclusion

+ CNN-AE/LSTM based reduced order surrogate was constructed
and applied to a turbulent channel flow
+ CNN-AE: able to map the flow field into 1.56% sized latent space

» LSTM: predict the next time step in the latent space recursively
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