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———————————————————————————— Magnetic Skyrmions - : e - Results -
We seek to generate viable equilibrium

configurations using several custom Generative

_ 7
Generator Loss —— Physics Loss
|-|| Discriminator Loss

Skyrmions are topologically protected non-trivial field configurations [1] observed
in chiral magnetic materials [2]. Their stability, nanometer size and coherent

dynamics [3] make them attractive candidates for applications such as race-track- i Adversarial Networks [8] that incorporate some of ) o0l £
like memories [4] and reservoir computing [5]. i : : . : : 4 ooz F 7a000 %
o . N : the micromagnetic physical laws into their
Skyrmionic states such as those on Fig. 7 are explored by minimizing the total i . . ) . 1- | . ! - -
energy of a random initial magnetisation configuration. Current numerical methods | architectures via physms-aware loss functions. A . . -
are far from exhaustive and computationally expensive. i @™ @ ™ @0 w0 00 @00 w0 w0 0
i : S : Fig. 4 Left: The average hinge losses and E loss for the last 500 epochs of the training of 10
{ PhySICS Losses B T Tralnlng Strategles ————— | PhysGANs with only hinge loss, the F is calculated as a score, not applied to the generators'’

gradients. One such PhysGAN had AED:—6.6 x 10%, ACP; [—2268, 160, —6512]. Right: The
losses of the training of 10 PhysGANs with E loss and strategy 2 for the last 500 epochs.

Every L,nys lO0Ss is computed for a
mini-batch of generated samples and
reduced to a single number.

1. Train the Generator only on L ys;

2. Train the Generator with both L
and hinge loss with the
Discriminator;

Fig. 1 Example training skyrmlon samples of size (48 32) generated W|th the mlcromagnetlcs
simulation software Ubermag with OOMMF as computational backend.
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 F loss: the average E[m];

« L, loss: the average of (L) or the

- . . I 3. First perform hinge-loss-only
Computational Micromagnetics " norm Ly or |Lx|?:

physics |

energy density

____________________ training or strategy 2 training for ] R

, , . : : p several epochs, then train only on B e

The magnetization field M (r) = M m(r) € R? (a hat denotes a unit length vector) is Combined loss: a.& + 5|L | for Lobys. P Y - ,,,,I_‘“LL 1l <o
computed using a finite-difference method where r is restricted to a 2D lattice grid p=1,2; m w0 om0 w0 oo ™ @ Mm@ w00

The training data consists of
equilibrium-state skyrmion
magnetizations, ‘seen’ by the network

Fig. 5 Left: The losses of a PhysGAN; last 500 epochs; trained with strategy 3 and|L |2 Switch

 LLG loss: the average
to |L« |?-only-training at 600t epoch. AED: —8.2 x 10%, ACP: [98, —2070, 913] ; Right: AED.

The energy of the system is computed as of {(m,Heg(m))” or the norm

of size (48, 32) or (144, 96).

Elm| = / Wex (M) + Wi (M) + w,(M)] d*r (1) [¢(m, Heg (m))[ or |£(m, Heg (m))* . as images. \
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Moriya and the Zeeman energy densities respectively. . - _ . . .
TS Evaluation -— . Fig. 7 Output of the Fig. 5 PhysGAN. More Fig. 8 Output of a PhysGAN trained with

diverse samples. strategy 3 and |¢/(m, Her(m))| loss. Less diversity.
called the effective field H. (m). The magnetisation field dynamics is governed by

PRI ) For every combination of strategy and L,,s, Samples were generated from a
the Landau-Lifshitz-Gilbert (LLG) equation [6]:

newly-instantiated PhysGAN trained for 1000 epochs. Results were checked how Training with strategy 1 always led to mode collapse. The PhysGANSs trained with

P . o ~ ~ physically plausible they were according to the following criteria: strategy 2 and 3 generated diverse samples which looked similar to the training
T = Ty e Her — g x (B x Hep) =: (M, Hen())  (2)

equilibrium as seen in Fig. 4, whilst reducing the L}ys . Strategy 3 also had better
Lnys reduction, smoother samples, but partial mode collapse. All loses are good
at reducing AED, but the L, and LLG losses reduce the ACP more. Inclusion of
L,nys makes the generated skyrmions more consistent with the physics model.

where 7 is the modified gyromagnetic ratio and « is the Gilbert damping, * |sthe L,nys being reduced over the epochs;
dependent on the skyrmion-hosting material which for this study was chosen to be
FeGe [7], whose o = 0.1. LetL, := m(r) x Hes. A dynamically steady state

(equilibrium state) is reached when L. is close to 0.
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 |s the average energy density E (AED) and the average cross product r,, (ACP) of
a batch of generated samples close to reference values computed from the
training data which are AED: —8.19 x 104, ACP:[1.76,6.78,1.83] x 10~*.

i The first variational derivative of the energy functional E[m] with respect tom is i
| i data as shown in Fig 2 and Fig. 3. The Discriminator and Generator losses maintain

i « Are the samples diverse and visually similar to the training data; i

« Vary the parameters dependent on the material. Check what magnetizations

search space from a Fig. 2 Output of size (48, 32) of a PhysGAN trained with I/ loss and strategy 2 for 1000 epochs.

—h[Disc:riminatnr]—{)—-

B e — Conclusion [

—————————————————————————————————————— PhysGAN o Rasulte N ]
r esults | | The proposed PhysGAN shows promising although not yet perfect results regarding

Our network PhysGAN, Rea) Training _ . - physics data generation. Future work improvements: i
implemented in Tensorflow I F'T I ‘;; ! E « Conditional PhysGAN; i
and Keras, reduces the 2° i

' AED: —7.7 x 10*; ACP:[—2623, 1820, 820].
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| dom initialisati . g F arise. This might assist the discovery of new helimagnetic materials;

- ranaom Iinitialisation using S

| Generator . . oo .

' the minimax game witha ¢ [ | ‘ « Apply the core ideas of the PhysGAN to other scientific domains.
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- hinge loss and a physics Fake Samples
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