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Skyrmions are topologically protected non-trivial field configurations [1] observed 
in chiral magnetic materials [2]. Their stability, nanometer size and coherent 
dynamics [3] make them attractive candidates for applications such as race-track-
like memories [4] and reservoir computing [5]. 

Skyrmionic states such as those on Fig. 1 are explored by minimizing the total 
energy of a random initial magnetisation configuration. Current numerical methods 
are far from exhaustive and computationally expensive.

Magnetic Skyrmions

The magnetization field (a hat denotes a unit length vector) is 
computed using a finite-difference method where     is restricted to a 2D lattice grid 
of size (48, 32) or (144, 96).

The energy of the system is computed as 

where                                                     are the symmetric exchange, the Dzyaloshinskii-
Moriya and the Zeeman energy densities respectively.

The first variational derivative of the energy functional         with respect to    is 
called the effective field . The magnetisation field dynamics is governed by 
the Landau-Lifshitz-Gilbert (LLG) equation [6]:

where      is the modified gyromagnetic ratio and     is the Gilbert damping, 
dependent on the skyrmion-hosting material which for this study was chosen to be 
FeGe [7] , whose               .  Let                             . A dynamically steady state 
(equilibrium state) is reached when      is close to 0. 

Computational Micromagnetics

Our network PhysGAN, 
implemented in Tensorflow
and Keras, reduces the 
search space from a 
random initialisation using 
the minimax game with a 
hinge loss and a physics 
loss which helps reduce the 
energy of the generated 
samples and keep them 
consistent with the FeGe
micromagnetic model.

PhysGAN

1. Train the Generator only on           ;

2. Train the Generator with both Lphys
and hinge loss with the 
Discriminator;

3. First perform hinge-loss-only 
training or strategy 2 training for 
several epochs, then train only on 
hghg .Lphys

The training data consists of 
equilibrium-state skyrmion
magnetizations, ‘seen’ by the network 
as images.

Training Strategies

Every           loss is computed for a 
mini-batch of generated samples and 
reduced to a single number.

• loss: the average          ;

• loss: the average of           or the 
norm         or          ;

• Combined loss: for                          

;

• LLG loss: the average 
of or the norm                               
| or                             .

Physics Losses

The proposed PhysGAN shows promising although not yet perfect results regarding 
physics data generation. Future work improvements:

• Conditional PhysGAN;

• Vary the parameters dependent on the material. Check what magnetizations 
arise. This might assist the discovery of new helimagnetic materials;

• Apply the core ideas of the PhysGAN to other scientific domains.

Conclusion

Training with strategy 1 always led to mode collapse. The PhysGANs trained with 
strategy 2 and 3 generated diverse samples which looked similar to the training
data as shown in Fig 2 and Fig. 3. The Discriminator and Generator losses maintain 
equilibrium as seen in Fig. 4, whilst reducing the Lphys. Strategy 3 also had better 
Lphys reduction, smoother samples, but partial mode collapse. All loses are good 
at reducing AED, but the Lx and LLG losses reduce the ACP more. Inclusion of 
lphys makes the generated skyrmions more consistent with the physics model.
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Fig.1 Example training skyrmion samples of size (48, 32) generated with the micromagnetics
simulation software Ubermag with OOMMF as computational backend.

For every combination of strategy and            , samples were generated from a 
newly-instantiated PhysGAN trained for 1000 epochs. Results were checked how 
physically plausible they were according to the following criteria:

• Are the samples diverse and visually similar to the training data;

• Is the           being reduced over the epochs;

• Is the average energy density    (AED) and the average cross product      (ACP) of 
a batch of generated samples close to reference values computed from the 
training data which are AED:                   , ACP:                                     .

Evaluation

We seek to generate viable equilibrium
configurations using several custom Generative 

Adversarial Networks [8] that incorporate some of 
the micromagnetic physical laws into their 

architectures via physics-aware loss functions.

Results

Fig. 2 Output of size (48, 32) of a PhysGAN trained with loss and strategy 2 for 1000 epochs. 
AED: ; ACP: . 

Fig. 3 Output of size (144, 96) of a  PhysGAN output (AED:          ); trained with strategy 3 on 
loss for 100 epochs. Samples from left to right are from epoch 6 to 41 with step of 6. It is 
noticeable how the Generator finds a more optimal state as the training progresses.

Fig. 4 Left: The average hinge losses and loss for the last 500 epochs of the training of 10 
PhysGANs with only hinge loss, the      is calculated as a score, not applied to the generators’ 
gradients. One such PhysGAN had AED:                     , ACP:                                     . Right: The 
losses of the training of 10 PhysGANs with loss and strategy 2 for the last 500 epochs.

Fig. 5 Left: The losses of a PhysGAN; last 500 epochs; trained with strategy 3 and          . Switch 
to           -only-training at 600th epoch. AED:                      , ACP:                          .  ; Right:  AED.

Fig. 7 Output of the Fig. 5 PhysGAN. More 
diverse samples.

Fig. 8 Output of a PhysGAN trained with 
strategy 3 and                    loss. Less diversity.


