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Abstract

We consider the problem of tensor decomposition with multiple side information
available as interactive features. Such problems are common in neuroimaging,
network modeling, and spatial-temporal analysis. We develop a new family of
exponential tensor decomposition models and establish the theoretical accuracy
guarantees. An efficient alternating optimization algorithm is further developed.
Unlike earlier methods, our proposal is able to handle a broad range of data types,
including continuous, count, and binary observations. We apply the method to
diffusion tensor imaging data from human connectome project and identify the key
brain connectivity patterns associated with available features. Our method will
help the practitioners efficiently analyze tensor datasets in various areas. Toward
this end, all data and code are available at https://CRAN.R-project.org/
package=tensorregress.

1 Introduction
Higher-order tensors have received increased attention across science and engineering. While most
tensor decomposition methods are developed for a single tensor observation, scientific studies often
collect side information, in the form of node features and interactions thereof, together with the tensor
data. Such data problems are common in neuroimaging, network analysis, and spatial-temporal
modeling. A popular example is in neuroimaging (Zhou et al., 2013). The brain connectivity networks
are collected from a sample of individuals, accompanied by individual characteristics such as age,
gender, and diseases status (see Figure 1a). Another example is in network analysis (Berthet and
Baldin, 2020). Side information such as people’s demographic information and friendship types are
often available. In both examples, scientists are interested in identifing the variation in the data tensor
(e.g., brain connectivities, social community patterns) that is affected by available features. These
seemingly different scenarios pose a common yet challenging problem for tensor data modeling.

In addition to the side information, another challenge is that many tensor datasets consist of non-
Gaussian measurements (Wang and Li, 2020; Lee and Wang, 2020) . Classical tensor decomposition
methods are based on minimizing the Frobenius norm of deviation, leading to suboptimal predictions
for binary- or count-valued response variables. A number of supervised tensor methods have been
proposed (Narita et al., 2012; Zhao et al., 2012; Yu and Liu, 2016; Lock and Li, 2018). These methods
often assume Gaussian distribution for the tensor entries, or impose random designs for the feature
matrices, both of which are less suitable for applications of our interest.
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Figure 1: Examples of supervised tensor decomposition with interactive side information. (a) Network
population model. (b) Spatio-temporal growth model.

Our contribution. This paper presents a general model and associated method for decomposing a
data tensor whose entries are from exponential family with interactive side information. We formulate
the learning task as a low-rank tensor regression problem, with tensor observation serving as the
response, and the multiple side information as interactive features. We blend the modeling power of
generalized linear model (GLM) and the exploratory capability of tensor dimension reduction in order
to take the best out of both sides. Our method greatly improves the classical tensor decomposition,
and we quantify the improvement in prediction through numerical experiments and data applications.

Notation. We follow the tensor notation as in Kolda and Bader (2009). The multilinear mul-
tiplication of a tensor Y ∈ Rd1×···×dK by matrices Xk = Jx(k)ik,jk

K ∈ Rpk×dk is defined

as Y × {X1, . . . ,XK} = J
∑
i1,...,iK

yi1,...,iKx
(1)
j1,i1
· · ·x(K)

jK ,iK
K, which results in an order-K

(p1, . . . , pK)-dimensional tensor. The inner product between two tensors of equal size is defined as
〈Y, Y ′〉 =

∑
i1,...,iK

yi1,...,iKy
′
i1,...,iK

. We use ‖·‖F and ‖·‖∞ to denote tensor F-norm and tensor
infinity norm, respectively. We use vec(·) to denote the operation that reshapes the tensor into a
vector, and Unfoldk(·) to denote the operation that reshapes the tensor along mode k into a matrix
of size dk-by-

∏
i6=k di. We also use ‖·‖σ and ⊗ to denote the matrix spectral norm and Kronecker

product of matrices, respectively. For ease of notation, we allow basic arithmetic operators (e.g.,
+,−) and univariate functions f : R→ R to be applied to tensors in an element-wise manner.

2 Proposed models and motivating examples
Let Y = Jyi1,...,iK K ∈ Rd1×···×dK denote an order-K data tensor. Suppose the side information is
available on each of the K modes. Let Xk = JxijK ∈ Rdk×pk denote the feature matrix on the mode
k ∈ [K], where xij denotes the j-th feature value for the i-th tensor entity, for (i, j) ∈ [dk]× [pk],
pk ≤ dk. We assume that, conditional on the features Xk, the entries of tensor Y are independent
realizations from an exponential family distribution, and the conditional mean tensor admits the form

E(Y|X1, . . . ,XK) = f (C × {X1M1, . . . ,XKMK}) ,
with MT

k Mk = Irk , Mk ∈ Rpk×rk for all k = 1, . . . ,K. (1)

where C ∈ Rr1×···×rK is a full-rank core tensor, Mk ∈ Rpk×rk are factor matrices consisting of
orthonormal columns with rk ≤ pk for all k ∈ [K], and f(·) is a known link function whose form
depending on the data type of Y . Common choices of link functions include identity link for Gaussian
distribution, logistic link for Bernoulli distribution, and exponential link for Poisson distribution.

Figure 1b provides a schematic illustration of our model. The features Xk affect the distribution
of tensor entries in Y through the sufficient features of the form XkMk, which are rk linear
combinations of features on mode k. The core tensor C collects the interaction effects between
sufficient features across K modes, and thus allows the identification of variations in the tensor
data attributable to the side information. Our goal is to find Mk and the corresponding C to reveal
the relationship between side information Xk and the observed tensor Y . Note that Mk and C are
identifiable only up to orthonormal transformations.

We give two examples of supervised tensor decomposition models (1) that arise in practice.
Example 1 (Spatio-temporal growth model). The growth curve model (Srivastava et al., 2008) was
originally proposed as an example of bilinear model for matrix data, and we extend it to higher-order
cases. Let Y = JyijkK ∈ Rd×m×n denote the pH measurements of d lakes at m levels of depth
and for n time points. Suppose the sampled lakes belong to q types, with p lakes in each type. Let
{`j}j∈[m] denote the sampled depth levels and {tk}k∈[n] the time points. Assume that the expected
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pH trend in depth is a polynomial of order at most r and that the expected trend in time is a polynomial
of order s. Then, the conditional mean model for the spatio-temporal growth is a special case of our
model (1), where X1 = blockdiag{1q, . . . ,1q} ∈ {0, 1}d×p is the design matrix for lake types,

X2 =


1 `1 · · · `r1
1 `2 · · · `r2
...

...
. . .

...
1 `m · · · `rm

 , X3 =


1 t1 · · · ts1
1 t2 · · · ts2
...

...
. . .

...
1 tn · · · tsn


are the design matrices for spatial and temporal effects, respectively. The spatial-temporal mode has
covariates available on each of the three modes.
Example 2 (Network population model). Network response model is recently developed in the
context of neuroimanig analysis. The goal is to study the relationship between network-valued
response and the individual covariates. Suppose we observe n i.i.d. observations {(Yi,xi) : i =
1, . . . , n}, where Yi ∈ {0, 1}d×d is the brain connectivity network on the i-th individual, and
xi ∈ Rp is the individual covariate such as age, gender, cognition, etc. The network-response
model (Rabusseau and Kadri, 2016) has the form

logit(E(Yi|xi)) = B ×3 xi, for i = 1, . . . , n (2)

where B ∈ Rd×d×p is the coefficient tensor of interest, and ×3 denotes the tensor-by-matrix multi-
plication along the 3rd mode (Kolda and Bader, 2009). The model (2) is also a special case of our
tensor-response model, with covariates on the last mode of the tensor.

3 Estimation methods with accuracy guarantees
We develop a likelihood-based procedure to estimate C and Mk in (1). Ignoring constants that do not
depend on Θ, the quasi log-likelihood of (1) is equal to

LY(C,M1, . . . ,MK) = 〈Y,Θ〉 −
∑

i1,...,iK
b(θi1,...,iK ) with Θ = C × {M1X1, . . . ,MKXK},

where b(θ) = θ2/2 for Gaussian response, b(θ) = exp(θ) for Poisson response, and b(θ) =
log(1 + exp(θ)) for Bernoulli response. We propose a constrained maximum quasi-likelihood
estimator (M-estimator),

(Ĉ,M̂1, . . . ,M̂k) = arg max
(C,M1,...,MK)∈P

LY(C,M1, . . . ,MK), (3)

where parameter spaceP =
{

(C,M1, . . . ,MK)
∣∣∣MT

k Mk = Irk , ‖Θ(C,M1, . . . ,MK)‖∞ ≤ α
}

,
and α is a positive constant. The maximum norm constraint on the linear predictor Θ is a technical
condition to avoid the divergence of the non-Gaussian variance.

The decision variables in the objective function (3) consist of K + 1 blocks of variables, one for the
core tensor C and K for the factor matrices Mk. We notice that, if any K out of the K + 1 blocks of
variables are known, then the optimization reduces to a simple GLM with respect to the last block
of variables. This observation leads to an iterative updating scheme for one block at a time while
keeping others fixed. A simplified version of the algorithm is described in Algorithm 1.

We provide the accuracy guarantee for the proposed M-estimator (3) by leveraging recent development
in random tensor theory and high-dimensional statistics.

Theorem 3.1 (Statistical Convergence). Let (Ĉ,M̂1, . . . ,M̂K) be the M-estimator in (3) and B̂ =

Ĉ × {M̂1, · · · ,M̂K}. Define rtotal =
∏
k rk, rmax = maxk rk, and Btrue = C × {M1, · · · ,MK}.

Under mild technical assumptions, there exist two positive constants C1, C2 > 0, such that, with
probability at least 1− exp(−C1

∑
k pk),

‖Btrue−B̂‖2F ≤
C2rtotal

rmax

∑
k pk∏
k dk

, and sin2 Θ(Mk,true, M̂k) ≤ C2rtotal

rmaxσ2
min(Unfoldk(Ctrue))

∑
k pk∏
k dk

,

where sin Θ(Mk,true,M̂k) = ‖MT
k,trueM̂

⊥
k ‖σ is the angle distance between column spaces.

Theorem 3.1 implies that the estimation has a convergence rate O(d−(K−1)) in the special case when
tensor dimensions are equal on every mode, i.e., dk = d for all k ∈ [K], and feature dimension
grows with tensor dimension, pk = γd, γ ∈ [0, 1), for k ∈ [K]. The convergence of our estimation
becomes favorable as the order of tensor data increases.
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Algorithm 1 Supervised Tensor Decomposition with Interactive Side Information
Input: Response tensor Y ∈ Rd1×···×dK , feature matrices Xk ∈ Rdk×pk for k = 1, . . . ,K, target

Tucker rank r = (r1, . . . , rK), link function f , maximum norm bound α
Output: Estimated core tensor Ĉ ∈ Rr1×···×rK and factor matrices M̂k ∈ Rpk×rk .

1: Random initialization of the core tensor C and factor matrices Mk.
2: while Do until convergence do
3: for k = 1 to K do
4: Obtain the factor matrix M̃k ∈ Rpk×rk by a GLM with link function f .
5: Perform QR factorization M̃k = QR. Update Mk ← Q and core tensor C ← C ×k R.
6: end for
7: Update the core tensor C by solving a GLM with vec(Y) as response, ⊗Kk=1[XkMk] as

features, with link function f . Rescale the core tensor C such that ‖Θ(C,M1, . . . ,MK)‖∞ ≤ α.
8: end while

4 Numerical experiments
We evaluate the empirical performance of our supervised tensor decomposition (STD) through
simulations. We consider order-3 tensors, where the conditional mean tensor is generated form
model (1). Given the generated linear predictor Θ = JθijkK = C × {M1X1,M2X3,M3X3}, the
entries in the tensor Y = JyijkK are drawn independently according to three probabilistic models:
(a) Gaussian model: yijk ∼ N (θijk, 1); (b) Poisson model: yijk ∼ Poisson

(
eθijk

)
; (c) Bernoulli

model: yijk ∼ Bernoulli
(
eθijk/1 + eθijk

)
.

The experiment I evaluates the accuracy when covariates are available on all modes. We set α =
10, dk = d, pk = 0.4dk, rk = r ∈ {2, 4, 6} and increase d from 25 to 50. Our theoretical analysis
suggests that B̂ = Ĉ × {M̂1,M̂2,M̂3} has a convergence rate O(d−2) in this setting. Figure 2a
plots the estimation error versus the effective sample size (d2), under three different distribution
models. We found that the empirical mean squared error (MSE) decreases roughly at the rate of
1/d2, which is consistent with our theoretical ascertainment. Similar behaviors can be observed in
the non-Gaussian data in Figure 2b-c.

effective sample size

M
S

E

M
S

E

rank

M
S

E

a b c d e f

Figure 2: (a)-(c): Estimation error against effective sample size. The dashed curves correspond to O(1/d2).
(d)-(f): Performance comparison under stochastic block models. The x-axis represents the number of blocks in
the networks. Response tensors are generated from Gaussian (a, d), Poisson (b, e) and Bernoulli (d, f) models .

The experiment II investigates the capability of our model in handling correlation among coefficients.
We mimic the scenario of brain imaging analysis. A sample of d3 = 50 networks are simulated,
where each network measures the connections between d1 = d2 = 20 brain nodes. We simulate
p = 5 features for the each of the 50 individuals. These features may represent, for example, age,
gender, cognitive score, etc. Recent study has suggested that brain connectivity networks often exhibit
community structure represented as a collection of subnetworks, and each subnetwork is comprised
of a set of spatially distributed brain nodes. To accommodate this structure, we utilize the stochastic
block model (Abbe, 2017) to generate the effect size. Specifically, we partition the nodes into r
blocks by assigning each node to a block with uniform probability. Edges within a same block are
assumed to share the same feature effects, where the effects are drawn i.i.d. from N(0, 1).

Figure 2d-f compares the MSE of our method with a multiple-response GLM approach. The multiple-
response GLM is to regress the dyadic edges, one at a time, on the features, and this model is
repeatedly fitted for each edge. As we find in Figure 2d-f, our tensor regression method achieves
significant error reduction in all three data types considered. The outperformance is substantial in the
presence of large communities; even in the less structured case (∼ 20/15 = 1.33 nodes per block),
our method still outperforms GLM. The possible reason is that the multiple-response GLM approach
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does not account for the correlation among the edges, and suffers from overfitting. In contrast, the
low-rankness in our modeling incorporates the shared information across entries.

The experiment III compares STD with three other supervised tensor methods: Higher-order low-rank
regression (HOLRR) (Rabusseau and Kadri, 2016), Higher-order partial least square (HOPLS) (Zhao
et al., 2012) and Subsampled tensor projected gradient (TPG) (Yu and Liu, 2016). Figure 3 shows
that STD outperforms others, especially in the low-signal, high-rank setting. As the number of
informative modes (i.e., modes with available features) increases, the STD exhibits a substantial
reduction in error whereas others remain unchanged (Figure 3b). This showcases the benefit of
incorporation of multiple features.

informative modes informative modes

Method

Figure 3: Comparison between different tensor methods. Panels (a) and (b) plot mean squared prediction error
(MSPE) versus the number of modes with available features. Panels (c) and (d) plot MSPE versus the effective
sample size d2. We consider rank r = (3, 3, 3) (low) vs (4,5,6) (high), and signal α = 3 (low) vs. 6 (high).

We then apply our method to brain structural connectivity networks from Human Connectome Project
(HCP) (Geddes, 2016). The dataset consists of 136 brain structural networks, one for each individual.
Each brain network is represented as a 68-by-68 binary matrix, where the entries encode the presence
or absence of fiber connections between the 68 brain regions. We consider four individual features:
gender (65 females vs. 71 males), age 22-25 (n = 35), age 26-30 (n = 58), and age 31+ (n = 43).
The goal is to identify the connection edges that are affected by individual features.

Figure 4: Top edges with large effects. (a) Global effect; (b) Female effect; (c) Age 22-25; (d) Age 31+. Red
(blue) edges represent positive (negative) effects. Edge-widths are proportional to the magnitudes of effect sizes.

We appy the supervised tensor decomposition to the HCP data. The BIC selection suggests a rank
r = (10, 10, 4) with quasi log-likelihood LY = −174654.7. Figure 4 shows the top edges with high
effect size, overlaid on the Desikan atlas brain template (Desikan et al., 2006). We find that the
global connection exhibits clear spatial separation, and that the nodes within each hemisphere are
more densely connected with each other (Figure 4a). In particular, the superior-temproal (SupT),
middle-temporal (MT) and Insula are the top three popular nodes in the network. Interestingly, female
brains display higher inter-hemispheric connectivity, especially in the frontal, parental and temporal
lobes (Figure 4b). This is in agreement with a recent study showing that female brains are optimized
for inter-hemispheric communication (Ingalhalikar et al., 2014). We find several edges with declined
connection in the group Age 31+. Those edges involve frontal-pole (Fploe), superior-frontal (SupF)
and cuneus nodes. The frontal-pole region is known for its importance in memory and cognition, and
the detected decline further suggests the age effects to brain connections.

5 Conclusion
We have developed a supervised tensor decomposition method with side information on multiple
modes. The empirical results demonstrate the improved interpretability and accuracy over previous
approaches. Applications to the brain connection data yield conclusions with sensible interpretations,
suggesting the practical utility of the proposed approach. Further exploring the benefits of supervised
tensor decomposition in specialized tasks will be necessary to boost the scientific discoveries.
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Broader Impact

Our supervised tensor decomposition method is widely applicable to network analysis, dyadic data
analysis, spatial-temporal model, and recommendation systems. The new method improves the
predictive power and enhances interpretability by incorporating of the interactive side information
into tensor decomposition. The application to brain connection dataset shows the practical utility of
the proposed method. We believe that our model enriches the research of tensor-based learning and
becomes a powerful tool to boost scientific discoveries in various fields.
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