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MOTIVATION

* Scientific studies (e.g. neuroimaging, social network
analysis) often collect the tensor observations with side
information.

* Tensor observations may consist of non-Gaussian
measurements (e.g. binary, count data).
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Figure 1. Brain connectivity networks (binary adjacency
matrices) with individual side information.

Our Goal: Identity the structural variation in the
data tensor affected by side information.

ALGORITHM

The alternating optimization algorithm updates one block
of parameters at a time while keeping other fixed.
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Figure 2. Likelihood trajectory for normal model. Dashed
lines are likelihood with true parameters.
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Figure 3. Mean squared prediction error (MSPE) comparison
between different tensor methods. We consider rank r» = (3, 3, 3)
(low) vs (4,5,6) (high) and signal oc = 3 (low) vs 6 (high).
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MODEL

Let ) € R4*X4K denote the tensor observation and X; € R%*Pi denote the side
information encoded as multiple feature matrices, for 2 = 1, ..., K. We propose a
supervised tensor decomposition

(V| X1, ., XK) = f(Cx1 X1 My X9 - xg XgMp),

where f(-) is the known link function depending on the data type, C € R~ *"K
is the unknown core tensor, and M, € RP:*" are unknown factor matrices with
orthonormal columns.
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Figure 4. Supervised tensor decomposition for an order-3 tensor with multiple side information.

The features X; affect the distribution of tensor entries in Y through "“supervised
tensor factors” X; M, . We call M, the “*dimension reduction matrix”, and C collects
the interaction effects between sufticient features.

We propose a likelihood-based estimator

(é,Ml,...,MK) — arg 1mmax ﬁy(C,Ml,...,MK),

(C,M,.... My )EP

where Ly (-) is the quasi log-likelihood function
Ey(cv Mla ooy MK) = <ya @> + Z b (@’il,...,iK) )

21,...,’iK

with © =C X1 X1M1 X sws XKXKMK,

b(-)is a known function depending on the data type in ), and P is the parameter
space

P = {(C,Ml, aMK)|MIZMk — I’rk: H@(CaMh >MK)|| < a} )

max —

with the positive constant ¢ .
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STATISTICAL GUARANTEES

Theorem. Suppose the singular values of X ;, M; are bounded
by constants and || X ||, = Q(+/d;) . Under mild technical
conditions, there exist constants (', Cy > 0, such that, with
high probability at least 1 — exp(—C1 ), px),
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forallz =1, ..., K,

and

2 _ Collkre Qi Px
F— maxgTg Hk; dz!

HB—B

where B =C x1 Mj X9 --- X My ,and Cy,Cs are constants
independent of {py } and {dx } .

APPLICATION

Our method identifies the global connectivity pattern as
well as local regions associated with age and gender in
the Human Connectome Project (HCP) data.
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Figure 5. Top edges with large effects. (a) Global effect; (b)
Female effect; (c) Age 22-25; (d) Age 31+. Red (blue) edges
represent positive (negative) effects. Edge-widths are proportional
to the magnitude of effect sizes.



