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Abstract

To date, most applications of machine learning (ML) in materials science have
focused on process optimization and improving engineering parameters of merit.
Learning physical laws directly from data has a great potential to accelerate materi-
als research by allowing us to extract generalizable scientific information directly
from data. In this study, we apply scientific ML — a blend of traditional scientific
mechanistic modeling (differential equations) with machine learning methodolo-
gies — to identify equations governing the degradation of methylammonium lead
iodide perovskite (MAPI). The environmental instability of halide perovskite mate-
rials is a major issue hindering the commercialization of perovskite solar cells, that
have potential to provide high-performing and cost-effective solar energy in future.
Discovering the underlying equations directly from perovskite degradation data
could accelerate the development of stable perovskite photovoltaic technology. We
aim to study the quantitative effect of temperature on MAPI decomposition with
degradation at a particular temperature as the first step. We obtain high temporal
resolution data describing MAPI film degradation and synthesize noise-free sim-
ulated data based on it to analyze how well the underlying differential equation
can be recognized using scientific ML. This is done by applying sparse regression
method PDE-FIND [17] on the simulated data. In order to investigate the robust-
ness of the identification of governing differential equations with respect to noise,
we apply varying levels of artificial noise to the simulated data. We obtain about
6% error between the exact solution and the solution identified by PDE-FIND,
even when 4% Gaussian noise is added. This study demonstrates the application of
scientific ML in practical materials science systems, highlighting the promise and
challenges associated with ML-aided scientific discovery.

1 Introduction

The decomposition of MAPI is a complex phenomenon affected by several factors such as film
properties, temperature [9, 5, 6], humidity [22, 10, 8] and illumination [14, 11]. MAPI has multiple
possible reaction pathways and degrades to PbI2 via reaction [1]:
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MAPbI3 → PbI2 + [CH3NH3
+ + I− ] → PbI2 + CH3 NH2 + HI

Smecca et al. [18] prove that the rate of MAPI degradation obeys an Arrhenius-type law. Using
transition state theory, Fan et al. [7] approximate the surface degradation rate and find that it
matches the rate observed in experiments. These studies suggest the dependence of the rate of
MAPI degradation on an Arrhenius-type equation. The derivation of this dependence through first
principles is difficult because of the complexity of MAPI decomposition, despite the availability of
well-resolved dynamical data.

Scientific ML methods are well-suited to identify governing equations from data, especially when
the systems being studied are too complicated to yield to traditional theoretical analysis. What sets
scientific ML apart from traditional curve-fitting or regression is its generalizability. In order to
perform curve-fitting, information on the equation form is required. Scientific ML can be used to
uncover the governing equation without the knowledge of the equation form. The knowledge of
underlying laws can be used to extrapolate beyond the dataset more efficiently. It can also provide
key information about the physical phenomena. There are multiple methods in literature: Rudy et
al. [17] describe PDE-FIND, a sparse regression approach for discovery of physical laws describing
dynamical systems. First, a library of potential candidate functions is built. Differentials are calculated
by finite difference or polynomial interpolation. Once a large matrix with all candidate functions is
composed, different sparse regression methods may be used to extract the partial differential equation
describing the system. The sparse methods implemented are sequential threshold ridge regression,
lasso regression, elastic net regression and greedy algorithm. Another sparse technique is Sparse
Identification of nonlinear Dynamics (SINDy) [4]. It uses a custom deep autoencoder to find a
coordinate system in which the dynamics of the system are sparse, and then uses sparse regression
to find the governing equations in the associated coordinate system. Atkinson et al. [2] present a
generalized method for the discovery of differential equations using genetic programming. Physics
Informed Neural Networks (PINN) [16] and PDE-NET [12, 13] are deep learning methodologies to
extract governing partial differential equations using dynamical data.

In this study, we focus on the application of PDE-FIND to perovskite degradation data. Identifying
governing differential equations directly from the experimental aging test data would provide tools for
reliable lifetime prediction of perovskite solar cells. A deeper understanding of thermal degradation
would help in the determination of acceleration factors for long-term aging tests. These developments
would spur the advancement of the perovskite photovoltaic technology and have been called for by
the community.

Figure 1: The experimental process. a) A schematic diagram of the in-house accelerated degradation
chamber with a superimposed camera image of degrading MAPI films. b) Average perovskite film
color as a function of time at different temperatures. c) Processed average red color component as a
function of time for films degraded at T = 55 ◦C.
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Figure 2: Schematic diagram of the data-management workflow used in this study. Workflow (1)
involves the application of PDE-FIND to experimental data; Workflow (2) first fits the experimental
data to create a simulated dataset, optionally adds Gaussian noise, then applies PDE-FIND

2 Methods

Our experimental workflow is shown in Figure 1. 140 thin-film samples of methylammonium lead
iodide (MAPI) were subjected to degradation at 0.15 Sun illumination, 20% relative humidity, and
temperatures varying from 35 to 85 ◦C in our in-house environmental chamber (Figure 1a, the
in-house environmental chamber is described in greater detail in [19]). We monitored the degradation
of MAPI based on the color change of the material. As MAPI films decompose, they change their
color from black (100% MAPI) to yellow (0% MAPI). We acquired images of the degrading films
with high temporal resolution and processed them to obtain the average red, blue and green color
components of films as a function of time (Figure 1b). We use the red color time-series in the study
because it captures the temporal perovskite decomposition behavior, as shown in [20](Figure 1c).

We use the non-linear least-squares method to fit our experimental data to the Verhulst logistic
equation [21] to model the S-shaped curve of the change in red color as a function of time. This is a
reasonable assumption because in the reactions involving the nucleation and growth of a new phase,
the fraction of the new phase follows a sigmoidal curve over time[3].

U(t, T ) = M +
UoKe

kt

(K − Uo) + Uoekt
(1)

∂U(t, T )

∂t
= k(T ) U(t, T )

(
1− U(t, T )

K

)
(2)

Where Uo is the initial concentration, k is growth rate and K is the carrying capacity. In the context
of MAPI degradation, Uo and K can be considered arbitrary parameters. We assume k varies with
temperature according to the Arrhenius equation[18]:

k(T ) = Ae(−
Ea
RT ) (3)

We use this model to produce noise-free simulated data as well as simulated data with Gaussian noise.
Our data-processing workflow is illustrated in Figure 2.

We apply the sparse regression methodology PDE-FIND [17] to experimental data (Workflow (1)).
First, we use the time-series from all the temperatures to discover the partial differential equation
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(PDE) defining the relationship between MAPI degradation, temperature and time. Then, we
apply PDE-FIND to the degradation data at each temperature, to discover the ordinary differential
equation (ODE) that describes MAPI decomposition at a particular temperature. We also apply PDE-
FIND to simulated data with and without noise (Workflow (2)). The library of potential candidate
functions consists of polynomials and other non-linear functions of U . Differentials are calculated
by finite difference with convolutional smoothing using a 1D Gaussian kernel. We also apply the
Savitzky–Golay filter to the time derivative to prevent the propagation and amplification of noise.
Once a large matrix with all candidate functions is composed, we use sequential threshold ridge
regression to identify which terms contribute to the dynamics described by the data as well as those
terms’ weights. The goal of this method is to find a sparse coefficient vector β that only consists of
the active features that best represent the dynamics. The rest of the features are hard-thresholded to
zero. The loss function we use is as follows (λ2 and λ0 are the L2 and L0 regularization penalties
respectively):

β̂ = arg min
β
‖Θ(U)β − Ut‖2 + λ2‖β‖2 + λ0‖β‖0 (4)

3 Results

Our aim is to obtain the equation that describes the environmental degradation of methylammonium
lead iodide (MAPI) as a function of time and temperature. There are two main challenges for
scientific ML in this application that are common also with many other experimental applications:
The function space that could in principle capture the degradation processes is enormous, complicating
identification of the equations. Furthermore, experimental data is noisy, making the identification of
quantitative analytic descriptions even more challenging.

We attempt to uncover the differential equation governing perovskite degradation directly from
experimental data (Workflow (1). We apply sparse regression with a broad, more general function
library consisting of polynomials of U and other non-linear functions such as sin(U), cos(U) and
exp(U). First, we apply PDE-FIND to the data at all temperatures to discover the governing PDE.
Second, we apply PDE-FIND to the time-series at each temperature separately to identify the
governing ODE. In both cases, the equation identified by PDE-FIND does not to fit the data. We
apply domain knowledge to narrow the candidate function library to polynomials of U . With these
constraints, we find that PDE-FIND is able to identify an ODE that fits the experimental data at each
temperature. There is significant variation in the value of the coefficients accompanying the selected
function terms with different experimental data points, however.

Instead of applying scientific machine learning to the experimental data directly, we combine intuition
along with our knowledge of the physical system to develop a model to produce noise-free simulated
data and simulated data with Gaussian noise (Workflow (2)). We use the non-linear least-squares
method to fit our experimental data to the Verhulst logistic equation [21] to model the S-shaped curve
of the change in red color as a function of time. We assume k varies with temperature according to
the Arrhenius equation.

With the noise-free data that we simulated using the Verhulst logistic equation model, PDE-FIND
estimates the underlying differential equation with significant accuracy, as shown in Figure 3. At 0%
noise, the MAE between the exact curve and one obtained from integrating the differential equation
identified by PDE-FIND is less than 2. In order to understand the performance of the method in the
presence of noise, we add artificial Gaussian noise to the simulated data. At 5% Gaussian noise,
PDE-FIND correctly identifies the functional terms, but the error in the fitting parameters increases
to almost 10%, and the resulting integrated curve has a 5 MAE relative to the underlying noise-free
simulated curve (Figure 3a). The equation identified by PDE-FIND has the same S-shaped form as
the exact data (Figure 3b). We compare the error in estimating the parameter values in the differential
equation describing the simulated data. We find that at 5% Gaussian noise, the relative error in
parameter estimates is less than 10% for 55 ◦C data (Figure 3c, Figure 3d).

We also compare the functioning of equation extraction via PDE-FIND on simulated datasets at
different temperatures. The Verhulst logistic equation model becomes increasingly steep and shifts
to the left with higher temperature. PDE-FIND successfully identifies this trend. It appears that the
MAE is higher for equation extraction at lower temperature data. On investigating further, we are able
to determine that most of the error comes from fitting the rising portion of the curve. When curves at
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different temperatures are appropriately truncated, the MAE at all temperatures and a particular noise
level is the same.

Figure 3: PDE-FIND Results: a) Heatmap of the mean absolute error (MAE) between the exact
solution and the solution obtained by integrating the DE identified by PDE-FIND at different noise
levels at different temperatures. b) Comparison of the exact solution at T=55 ◦C with solution
curves obtained by integrating the DE identified by PDE-FIND. c) Relative error between the exact
parameter weight and those estimated by PDE-FIND at different noise levels for T=55 ◦C data. d)
The equation identified by PDE-FIND along with parameter weights in a tabulated format for T=55
◦C and different noise levels. The last row of the table has the values of parameters for the exact
solution.

4 Conclusion

We conclude that the study of materials degradation can be rendered more quantitative through the
identification of differential equations that govern the process. Our approach has the potential to
accelerate the understanding of materials degradation and the reliability optimization of perovskite
materials. Extracting physical laws would facilitate the definition of acceleration factors for aging
tests and also help in the prediction of perovskite solar cell degradation under varying environmental
conditions. We demonstrate the application of a scientific ML tool, PDE-FIND on MAPI degradation
data. Our results show that PDE-FIND succeeds at identifying the differential equation describing
the simulated data when up to 5% Gaussian noise is added. The error in the parameter values is
10% at 5% Gaussian noise. Scientific ML methods can be immensely useful at uncovering the
governing equations of dynamical systems, if the data obtained has low noise or can be denoised by
noise-reduction techniques. However, most experimental data is typically noisy, and denoising the
data adequately can be challenging. Our contribution motivates the development of scientific ML
techniques that are more robust to noise.
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Broader Impact

There remain many complex systems that have eluded quantitative analytic descriptions or even
characterization of a suitable choice of variables in many disciplines such as biology, finance and
materials science. With today’s state-of-the art equipment, acquiring large quantities of data has never
been easier. As put by Rackauckas et al. [15], the well-known adage “a picture is worth a thousand
words” might well be “a model is worth a thousand datasets.”. Scientific ML is a promising method
that can be used to uncover governing equations through data, especially when the derivation of
physical laws using first principles is challenging. Not only does scientific machine learning aide
us with understanding the underlying scientific phenomena better, it also helps to make simulations
faster and extrapolate beyond our dataset. Through our study we show that, scientific ML, in its
current state, is well-suited to be applied to domains where obtaining large quantities of low-noise
data is possible, and will find more applications with methods that are robust to noise.
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