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Abstract

Quantum mechanics is fundamental to modern science and technology. Given
the high dimensional nature of quantum mechanics, simulating quantum systems
requires a large amount of computational power, which demands algorithms to
efficiently approximate such systems. In this paper, we apply a transformation
that maps quantum dynamics to classical probabilistic differential equations. We
then parameterize the probability distribution with autoregressive neural networks,
which allows us to design efficient stochastic algorithms to simulate quantum
evolution and solve for steady-state solutions.

1 Introduction.

The laws that specify the properties of materials and devices around us are quantum mechanical
in nature. Our ability to simulate quantum mechanics is important both for making predictions
about physical phenomena as well as for engineering quantum devices and computers [1, 29].
Although simulating quantum systems simply requires solving a first order differential equation, the
computational complexity scales exponentially with system size, making it intractable for all but the
smallest problems.

A canonical approach to approximately overcome this problem has been to develop a compact
representation of a quantum state and then to update this representation under the rules of dynamic
evolution. Historically, these compact representations have been motivated by dressed versions
of exactly solvable physical systems. More recently, neural networks have been used to represent
wave functions [3, 8, 9, 11, 12, 20, 21, 23, 25, 26]. Naively, a natural choice for such a compact
representation might be a generative model; unfortunately, the fact that the standard representation of
a quantum state can’t be viewed as a probability distribution precludes this as a direct approach.

In this work, we simulate quantum dynamics using an approach which maps the quantum state to a
probability distribution via positive operator-valued measure (POVM) [4, 5, 22]. This mapping turns
the differential equations governing the evolution of quantum states to a classical first order differential
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equations on probabilities. We parameterize the probability distribution with an autoregressive model
and describe an algorithm which updates the parameters of this model under the application of
quantum dynamics. This extended abstract investigates how the accuracy of this approach is affected
by both algorithmic parameters (such as the size of the transformer) as well as physical parameters
(such as the amount of dissipation in the system).

2 Mapping Quantum Mechanics to a Probabilistic Theory

The most general quantum mechanical dynamic evolution corresponds to time evolving a quantum
system coupled to an environment, i.e. an open system [2]. The time evolution of a generic open
quantum system is described by the first order differential equation,

∂ρ

∂t
(t) = L [ρ(t)] , (1)

where L is a linear operator acting on the positive semi-definite (trace-one) density matrix ρ which is
exponentially large in the system size n. The density matrices ρ can be mapped to a probability distri-
butions p(a) ≡ p(a1, a2, · · · , an) using informationally complete POVM, where ai ∈ {0, 1, 2, 3}
can be viewed as the measurement outcome for each qubit [4]. This mapping transforms Eq. 1 into
the probabilistic equation

∂pt
∂t

(a1, a2, a3, · · · , aN ) =
∑

b1,b2,b3,··· ,bN

pt(b1, b2, b3, · · · , bN )Lb1,b2,b3,··· ,bNa1,a2,a3,··· ,aN , (2)

While this equation is general, L is system-specific. In this work, we consider the transverse-field
Ising model coupled to a Markovian bath; for that system,

Lb
a = −iTr

(
H[N (b),M(a)]

)
+
∑
k

γk
2

Tr
(

2ΓkN
(b)Γ†kM(a) − Γ†kΓk{N (b),M(a)}

)
, (3)

where [·, ·] refers to commutator and {·, ·} refers to anticommutator. Here the Hamiltonian H is
defined as H = J

∑
〈i,j〉 σ

(z)
i σ

(z)
j + h

∑
k σ

(x)
k , where σ(α)

i with α = x, y, z are Pauli matrices
and the pair of angled brackets refers to neighboring sites. The jump operators are chosen to be
Γk = σ

(−)
k = 1

2 (σ
(x)
k − iσ

(y)
k ). We choose a set of factorized operators {M(a)} = {M(a1)⊗M(a2)⊗

M(a3)⊗ · · · } which leads to {N (b)} = {N (b1)⊗N (b2)⊗N (b3)⊗ · · · }, where M(ai) are four 2× 2

positive semi-definite matrices and N (bi) are four 2× 2 Hermitian matrices [4].

A crucial property of L for the success of the techniques in this paper, is that, for each a the scalar Lb
a

is non-zero only on a small (i.e. polynomial in N ) set of b and those non-zero terms can be quickly
computed given a.

3 Solving Quantum PDE as a High Dimensional Probabilistic PDE

Notice that Eq. 2 is a high dimensional probabilistic PDE with solution pt(a) =∑
b p0(b) exp

(
tLb

a

)
≡
∑

b p0(b)St(a, b). For real-time evolution, the matrix St(a, b) is a quasi-
stochastic matrix with both positive and negative values but whose sum

∑
b St(a, b) = 1. We

propose a general algorithm for solving Eq. 2 using the forward-backward trapezoid method [14] with
exact sampling, which is analogous to the cases of the IT-SWO [19] and the real-time wavefunction
dynamics [10] with Monte Carlo sampling. The solution is obtained iteratively by setting∑

b

(
δba − τLb

a

)
pt+2τ (b) =

∑
b

(
δba + τLb

a

)
pt(b), (4)

where δba is the Kronecker delta function and τ is the step size. It is challenging to solve Eq. 4
directly from matrix operations as the operators on both sides grow exponentially with respect to
the number of particles in the system. Instead, we parameterize the probability distribution with an
autoregressive neural network as pθ(t) and design a cost function which solves for pθ(t+2τ) given pθ(t).
This parameterization allows the configuration a to be sampled exactly and efficiently. Therefore, at
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each step in time, one needs two neural networks, pθ(t) and pθ(t+2τ), where pθ(t) is the pretrained
neural network at the last step. Then the cost function can be defined as

C =
1

Ns

Ns∑
a∼pθ(t+2τ)

1

pθ(t+2τ)(a)

∣∣∣∣∑
b

[
pθ(t+2τ)(b)

(
δba − τLb

a

)
− pθ(t)(b)

(
δba + τLb

a

) ]∣∣∣∣, (5)

where the sum is over a sampled stochastically from pθ(t+2τ). We determine the autoregressive model
at the each time step using the following algorithm. At t = 0, we initialize an autoregressive model
with some initial probability distribution (corresponding to the initial distribution of our quantum
system). In some cases this can be done analytically; otherwise, one should do it with quantum
tomography [5, 6]. To generate the next step, one samples a from the autoregressive neural network
at time t+ 2τ . Given a, we generate all b that are non-zero in Lb

a. Because pθ(t+2τ)(b) and pθ(t)(b)
can be evaluated explicitly in an autoregressive model, the summand of the objective function C can
be evaluated for this sampled a. We use automatic differentiation in Pytorch [24] with respect to
pθ(t+2τ)(b) to optimize C and find the updated Transformer parameters for the next step.

One interesting aspect of the dynamics is to understand properties of the system when T →∞. In
this limit, as long as γk 6= 0, the system reaches a fixed point. While one approach to solve for the
fixed point is to simply run the dynamics for an extended time, an alternative approach is to solve
directly for the fixed point. The fixed point can be obtained by setting

∑
b p(b)Lb

a = 0, which solves
for the null space of Lb

a by minimizing∥∥∥∥∂p∂t
∥∥∥∥
1

≈ 1

Ns

Ns∑
a∼pθ

∣∣∑
b pθ(b)Lb

a

∣∣
pθ(a)

, (6)

where, again, the sum is over a sampled stochastically from pθ, and the gradient is taken with respect
to pθ(b).
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Figure 1: Diagram of the Transformer. (a) Diagram of a single transformer layer, which consists of a
self multi-head attention layer and a feed forward layer. (b) Diagram of the full autoregressive model,
which consists of one or more of the single transformer layers, together with an embedding layer, a
positional encoding layer, a linear layer and a log softmax layer.

In this section, we describe the Transformer architecture [28] used to parameterize the distribution, as
well as the evaluation and the sampling processes.

The probability distribution of a given configuration a is modeled as conditional probabilities
pθ(a) =

∏
k pθ(ak|a1, a2, · · · , ak−1) with an autoregressive neural network. The configurations can

be sampled exactly from the probability distribution, which allows for fast and accurate sampling
compared with Markov chain Monte Carlo techniques. We choose to use an autoregressive Trans-
former (Fig 1), but other autoregressive models including recurrent neural networks (RNN) [7, 13]
and Pixel Convolutional Neural Networks (PixelCNN) [27] are also applicable.

Evaluation: For any sequence a = {a1, a2, a3, · · · , aN}, it is fed into the Transformer together
with a default value a0 (which we choose to be 4). The embedding layer converts each ai into an
embedding vector of length nd, which, after the positional encoding layer, is fed into the transformer
layers. A mask is applied to the multi-head attention to ensure autoregressiveness. The linear layer
has a shape of nd × 4, which converts the output vector from the transformer layers into a vector of
length 4 for each site. After the log softmax layer, we get the log of conditional probabilities for each
site, which can then be summed over to obtain the overall log probabilities.

3



Sampling: We first feed a0 into the Transformer, which gives us log p (a1), from which we can
sample for the first site and obtain a1. Then, we can feed both a0 and a1 into the Transformer to
sample for a2. This process goes on until we have sampled all sites.

There are two hyper-parameters we adjust in the Transformer: the number of transformer layers
stacked on each other nl and the hidden dimension nd. It should be noted that both the evaluation
process and sampling process can be performed in parallel, i.e. one can evaluate or sample a batch of
a’s at the same time, which allows for efficient computation.

5 Experimental Results.

Figure 2: (a,b,c) Values of 〈σz〉 as a function of time, (a) for different dissipation γ/hwith J/h = 1/3,
time step τ = 0.02, nl = 1 transformer layers and nd = 32 hidden dimensions for the Transformer,
(b) for different time steps τ with J/h = 1/3, γ/h = 1/6, nl = 1, and nd = 32, and (c) for
different sizes of Transformers with J/h = 1/3, γ/h = 1/6, and τ = 0.02. (d) Values of 〈σz〉 as a
function of J/h for the steady-state solution (fixed point) computed using the variational approach
with γ/h = 2/3, nl = 1, and nd = 32. All: During the training process, we choose a sample size of
Ns = 12000 and use the Adam [18] optimizer to train the neural network until the loss converges
(150 iterations in each time step for dynamics and 1000 iterations for variational approach). The
exact solutions (dashed lines) are computed using QuTip [15, 16].

In this section, we benchmark the Transformer on a series of examples looking at its efficacy as we
tune both algorithmic and physical parameters. We performed both the forward-backward trapezoid
integration method using the loss function defined in Eq. 5 and direct minimization of Eq. 6 to find
the steady state for γk 6= 0. We then measure the observable 〈σz〉 = 1/N

∑
i〈σ

(z)
i 〉 as the average of

all single site observables.

We start by considering the dependence of 〈σz〉 as we change the amount of dissipation γk in this
system. Larger dissipation corresponds to stronger coupling to the environment and faster decohering
of quantum effects. We find (see Fig. 2(a)) that the smaller the dissipation, the quicker there is a
deviation between the exact results and the Transformer results. We find that the general behavior
is qualitatively correct but there is a clear deviation both in the amplitude as well as frequency of
the dynamics. In Fig. 2(b) we modify the time step τ that we use. The exact solution is in the limit
τ → 0. We find the errors here mainly affect the frequency of the oscillation at larger time. In
Fig. 2(c), we notice that using different number of layers or hidden dimensions has small effect
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on the results, presumably because the bottleneck in the quality of our algorithm is not related to
representability in this case, i.e. the Transformer with nl = 1, nd = 16 is already flexible enough to
represent the distribution at these various times. Instead, we expect the deviation from the true result
may be primarily coming from accumulated errors that come from imperfect optimizations. Finally,
in Fig. 2(d) we compute the observable in the limit of large time using the variational approach by
minimizing Eq. 6. We find good agreement for these fixed-points from the exact solution.

6 Conclusion

We have utilized a general approach to map quantum mechanical problems into classical probability
problems and simulated the dynamics of the probability distribution with an autoregressive Trans-
former. We then investigate the time evolution for both open and closed quantum systems as well as
the fixed point solution for open quantum systems.

Our results closely resemble the exact result for a 10-qubit transverse field Ising model and offer the
possibility to scale to larger systems. Our approach could have broad applications for density matrix
evolution in different contexts, such as finite temperature quantum evolution.

7 Broad Impacts

The simulation of quantum problems is simultaneously important and difficult, spanning disciplines
ranging from chemistry to condensed matter to high energy physics and quantum computing. A large
fraction of the supercomputing time throughout the world goes directly toward solving quantum
systems. If we could do arbitrary quantum dynamics, this would have direct consequences throughout
industry, affecting our ability to develop improved fertilizers, simulate pharmaceuticals, etc. While
many approximate methods exist, it is important to develop and benchmark new and systematically
improvable approaches to quantum dynamics, especially those that treat the realistic situation of
open dynamics. In this work, we demonstrate an improved way of utilizing state-of-the-art machine
learning methodologies to significantly improve the simulation for quantum dynamics. Beyond
the quantum mechanical applications, our work demonstrates how to approximately solve, using
autoregressive neural networks, a high-dimensional probabilistic differential equation. Such equations
appear in a wide variety of classical contexts and our work represents an important step forward in
the solution of these problems.
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