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Quantum mechanics is fundamental to modern science and technology. Given the high 

dimensional nature of quantum mechanics, simulating quantum systems requires a large 

amount of computational power, which demands algorithms to efficiently approximate such 

systems. In this work, we apply an exact transformation that maps quantum dynamics to 

classical probabilistic differential equations. We then parameterize the probability distribution 

with autoregressive neural networks, which allows us to design efficient stochastic algorithms 
to simulate quantum evolution and solve for steady-state solutions.

Abstract

Quantum Dynamics as Probabilistic Differential Equation

Autoregressive Transformer5 Parameterization

• Closely resemble the exact result for a 10-qubit transverse Ising model. 
• Offer the probability to scale to larger systems.
• Broad applications for density matrix evolution in different contexts.
• Demonstrate how to approximately solve, using autoregressive neural 

networks, a high-dimensional probabilistic differential equation, which appears 
in a wide variety of classical contexts. 

Conclusions

Open System Dynamics: Lindblad master equation1:
𝜕𝜌

𝜕𝑡
𝑡 = ℒ[𝜌 𝑡 ]

• 𝜌: density matrix (positive semi-definite and trace-one)
• ℒ: Liouvillian (linear) superoperator (depends on the system)

Probabilistic Differential Equation : First order differential equation:
𝜕𝑝𝑡
𝜕𝑡

𝑎1, 𝑎2, ⋯ , 𝑎𝑁 = ෍

𝑏1,𝑏2,⋯,𝑏𝑁

𝑝𝑡 𝑏1, 𝑏2, ⋯ , 𝑏𝑁 𝐿𝑎1,𝑎2,⋯𝑎𝑁
𝑏1,𝑏2,⋯𝑏𝑁

• 𝑝𝑡: a time dependent probability distribution over multiple qubits 𝑎𝑖 ∈ 0,1,2,3
• 𝐿: a 4𝑁 × 4𝑁 matrix 

Quantum Classical Mapping: 
• Positive operator-valued measure (POVM) operators2, 3, 4:

• Frame:

𝑀 𝒂 = 𝑀 𝑎1 ⊗𝑀 𝑎2 ⊗⋯⊗𝑀 𝑎𝑁

• 𝑀(𝑎𝑖) : four 2 × 2 positive semidefinite matrices with σ 𝑎𝑖
𝑀 𝑎𝑖 = 𝕝

• Dual-frame:

𝑁 𝒃 = 𝑁 𝑏1 ⊗𝑁 𝑏1 ⊗⋯⊗𝑁 𝑏𝑁

• 𝑁 𝑏𝑖 : four 2 × 2 Hermitian matrices
• Probability distribution from density matrix

𝑝𝑡 𝒂 = Tr 𝜌𝑀 𝒂

• Matrix coefficient of 𝐿 from system Hamiltonian and dissipation

𝐿𝒂
𝒃 = −𝑖 Tr ℋ 𝑁 𝒃 , 𝑀 𝒂 +෍

𝑘

𝛾𝑘
2
Tr 2Γ𝑘𝑁

𝒃 Γ𝑘
†
𝑀 𝒂 − Γ𝑘

†
Γ𝑘{𝑁

𝒃 , 𝑀 𝒂 }

• [⋅,⋅]: commutator
• {⋅,⋅}: anticommutator

• ℋ = 𝐽σ 𝑖,𝑗 𝜎𝑖
𝑧
𝜎𝑗

𝑧
+ ℎσ𝑘 𝜎𝑘

𝑥
: system (transverse Ising) Hamiltonian 

• 𝜎𝑖
𝛼

: Pauli matrices

• ⟨⋅,⋅⟩: neighboring sites

• Γk = 𝜎𝑘
−
=

1

2
𝜎𝑘

𝑥
− 𝑖𝜎𝑘

𝑦
: jump (dissipation) operators

• Parameterize

𝑝𝜃 𝒂 =ෑ

𝑘

𝑝𝜃 𝑎𝑘|𝑎1, 𝑎2, ⋯ , 𝑎𝑘−1

• Exact sampling
𝑎𝑖 ∼ 𝑝𝜃 𝑎𝒊|𝑎1, 𝑎2, ⋯ , 𝑎𝒊−1

Dynamics Loss Function

Forward-Backward Trapezoid Method:
• Initialize 𝑝 𝑡=0 ,𝜃

• At each time step with step size 𝜏
• Existing Transformer 𝑝𝑡
• Target Transformer 𝑝𝑡+2𝜏,𝜃
• Match 𝑝𝑡 and 𝑝𝑡+2𝜏,𝜃 at 𝑡 + 𝜏 stochastically with the cost function

𝒞 =
1

𝑁𝑠
෍

𝒂∼𝑝𝑡+2𝜏

𝑁𝑠
1

𝑝𝑡+2𝜏(𝒂)
෍

𝒃

𝑝𝑡+2𝜏,𝜃 𝒃 𝛿𝒂
𝒃 − 𝜏𝐿𝒂

𝒃 − 𝑝𝑡 𝒃 𝛿𝒂
𝒃 + 𝜏𝐿𝒂

𝒃

Backward                         Forward

Steady-state Variational Method:
• For dissipative systems (𝛾 > 0), a steady state is reached as 𝑡 → ∞
• Stochastically minimizing

𝜕𝑝

𝜕𝑡
1

≈
1

𝑁𝑠
෍

𝑎∼𝑝

𝑁𝑠
σ𝒃𝑝𝜃 𝒃 𝐿𝒂

𝒃

𝑝 𝒂

yields the same result as 𝑝 𝑡→∞ ,𝜃

Experimental Results

Compare different dissipations:
Larger dissipation corresponds to 
stronger coupling to the environment and 
faster decohering of quantum effects.
The smaller the dissipation, the quicker 
there is a deviation between the exact 
results and the Transformer results.

Compare different step sizes:
The errors mainly affect the frequency 
of the oscillation at larger times. The 
general shape is  correct for different 
values of step sizes

Compare Transformer architectures:
Using different number of layers or 
hidden dimensions has small effect on the 
results, presumably because the 
bottleneck in the quality of our algorithm 
is not related to the  representability, but 
the accumulated errors from imperfect 
optimizations.

Variational steady state:
The observable in the limit of large 
time using the variational approach. 
We find good agreement for theses 
fixed-points from the exact solution.


