

Multi-Constitutive Neural Network for Large Deformation Poromechanics Problem

¹Department of Civil and Environmental Engineering, Stanford University, ²Department of Mechanical Engineering, Stanford University ³Institute for Computational and Mathematical Engineering, Stanford University *Equal Contribution

Motivations

- **PINN:** In many engineering fields, a fair number of problems are closely related to differential equations. Physics-informed neural network (PINN, by Raissi et al 2017) is proposed to solve a given physics problem described by a specific partial differential equation (PDE).
- Multi-Constitutive Problem: Multiple PDEs exist for a given problem, corresponding to choosing different constitutive laws. In our problem, we have a universal PDE (mass balance equation):

$$\frac{\partial J}{\partial \hat{t}} - \frac{1}{\varphi_0^3} \frac{\partial}{\partial \hat{X}} \left[\frac{\left(J - 1 + \varphi_0\right)^3}{J^2} \frac{\partial \hat{p}}{\partial \hat{X}} \right] = 0$$

and three constitutive laws of hyper-elasticity:

Law1:
$$\frac{\partial \hat{p}}{\partial \hat{X}} = \frac{3J^2 - 1}{2} \frac{\partial J}{\partial \hat{X}}$$

Law2:
$$\frac{\partial \hat{p}}{\partial \hat{X}} = \left[\hat{\gamma} \frac{1 - \log J}{J^2} + \hat{\mu} \left(3J^2 - 1\right)\right] \frac{\partial J}{\partial \hat{X}}$$

Law3:
$$\frac{\partial \hat{p}}{\partial \hat{X}} = \left[\hat{\gamma} \frac{1 - \log J}{J^2} + \hat{\mu} \left(1 + \frac{1}{J^2}\right)\right] \frac{\partial J}{\partial \hat{X}}$$

Our Approach: MCNN PDE 1 (σ) One-hot $\overline{\partial \hat{t}}$ Dot "transfo encoding, PDE 2 \bullet rmed" $\partial J \partial^2 J$ 3 by 1 product output. $\frac{1}{\partial \hat{X}} \quad \frac{1}{\partial \hat{X}^2}$ vector σ PDE 3 One-hot encoding, Boundary condition 3 by 1 & Initial condition vector \vec{e} (They're the same for PDE 1 to 3)

Figure 1: A schematic diagram of our proposed MCNN.

Qi Zhang^{1*}, Yilin Chen^{1*}, Ziyi Yang^{2*}, Eric Darve^{2, 3}

MCNN Loss:

$$\mathcal{L} = \left\{ \sum_{i=1}^{3} e_i f_i \left[\frac{\partial}{\partial \hat{t}} J\left(\hat{X}, \hat{t}, \vec{e}\right), \frac{\partial}{\partial \hat{X}} J\left(\hat{X}, \hat{t}, \vec{e}\right), \frac{\partial^2}{\partial \hat{X}^2} J\left(\hat{X}, \hat{t}, \vec{e}\right) \right] \right\}^2 + \mathcal{L}_{BI}$$

$$\mathcal{L}_{BI} = \left\{ \begin{bmatrix} J\left(0, \hat{t}, \vec{e}\right) - J \end{bmatrix}^2 & \hat{X} = 0, \quad \hat{t} > 0 \\ \begin{bmatrix} \frac{\partial}{\partial \hat{X}} J\left(\hat{X}, \hat{t}, \vec{e}\right) \Big|_{\hat{X} = 1} \end{bmatrix}^2 & \hat{X} = 1, \quad \hat{t} > 0 \\ \begin{bmatrix} J\left(\hat{X}, 0, \vec{e}\right) - 1 \end{bmatrix}^2 & \hat{t} = 0, \quad 0 < \hat{X} < 1 \\ 0 & \hat{t} > 0, \quad 0 < \hat{X} < 1 \end{bmatrix} \right\}$$

Training Details:

Table 1: Material properties (same for all three PDEs).

$\hat{\gamma}$	$\hat{\mu}$	$arphi_0$	$ar{J}$	\hat{t}
1/3	1/3	0.3	0.8	$0 \leq \hat{t} \leq 1$

Table 2: Model parameters of the neural networks. The total size of the training set for MCNN is the same as each independent PINN. All architectures use 5 (hidden layers) \times 50 (neurons) with tanh as the activation function. The test sets are always equispaced within the domain. Due to the issue of numerical instability of the Saint-Venant Kirchhoff law [22], we adopt a larger number of epochs for law 1 to make the optimization process more stable. When the number of epochs is fixed, we tune the learning rate and find that the best value is 5e-4. These learning rates and numbers of epochs are also typical values used in [7, 8, 9].

DNN	Training set	Test set	Optim.	Rate	Epochs
MCNN (ours)	1000 (per law)	10^4 (per law)	Adam [12]	5e-4	10^{5}
PINN of law 1	3000	10^{4}	Adam	5e-4	$5 imes 10^4$
PINN of law 2	3000	10^{4}	Adam	5e-4	2×10^4
PINN of law 3	3000	10^{4}	Adam	5e-4	10^{4}

Results

- Surprisingly MCNN, which is trained for all three laws, achieves higher prediction accuracy than the independent PINN on law 2 and law 3 (see the table below).
- Visualization in Figure 2 and Figure 3 shows ulletthat MCNN produces clearly distinct and accurate predictions for all three laws.

Method	Law 1	Law 2	Law 3
MCNN (Ours)	0.3864%	0.1316%	0.1658%
Independent PINN	0.2888%	0.2392%	0.4089%

Figure 2: Plots of predicted J with MCNN and FD. MCNN is able to make an accurate inference for each constitutive law

Figure 3: A visualization of MCNN predictions and reference solutions for the dimensionless settlement \hat{U} . Predictions from MCNN, even though they are generated by the same model, are very accurate for all three constitutive laws.

Conclusions

A novel modeling technique called MCNN is proposed to solve the multi-constitutive problems by using a law-encoding vector. MCNN could achieve good accuracies for the nonlinear large deformation problem. Future work: study encoding vectors of the form (a, b, c) with a + b + c = 1 and $a, b, c \ge 0$, e.g., (0.2, 0.3, 0.5). This is akin to the idea of fractional derivatives