Structuro-elasto-plasticity (StEP) model for plasticity in disordered solids
Ge Zhang, Sean Ridout, Hongyi Xiao, Robert Ivancic, Entao Yang, Robert Riggleman, Douglas Durian, and Andrea Liu

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$

Incorporating softness into elasto-plastic model allows predicting if a shear band forms.

Train softness using SVM
Local environment (of a particle)
structure functions

Softness strongly correlates with rearrangements

We study disordered solids made of soft particles
These soft disks repel each other when they overlap, and have no interaction otherwise

\[n(r) = \begin{cases} \left(1 - \frac{r_{ij}}{r_i r_j}\right)^{2.5} & \text{if } r_{ij} < r_i + r_j \\ 0 & \text{otherwise} \end{cases} \]

Different disordered solids behave differently under shear. Why?
Under external force, some disordered solids form shear bands, and some don’t. Those forming shear bands are usually more brittle.

Non shear-banding system

A different shear-banding system [1]

Elasto-plastic models: rearrangement and strain interplay
A family of known model for these disordered solids are elasto plastic models, in which particle rearrangements sends out strain fields, which triggers more rearrangements.

We want to consider another factor: local structure (softness)
Local structure should also play a role here, since particles in a less stable local environment rearranges more easily. We capture this using a machine-learned quantity, softness.

I rearrange easily! I don’t!
I am soft, I have softness $S>0$ I am hard, I have $S<0$