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THE OBJECTIVE

This work reports a model to custom-design artificially
designed composites known as ‘metamaterials” which
demonstrate highly engineerable electromagnetic (EM)
properties. Typically, they comprise of 2D or 3D periodic
arrays of sub-wavelength conducting elements.

OUR APPROACH

An efficient desigh scheme encompassing :

- The forward problem (predicting the EM response
from a given design), and,

- The inverse problem (generating a design for a
desired EM response)

We demonstrate that by treating the EM response data

as a time-varying sequence and the inverse problem as a

single-input, multiple-output (SIMO) model, we force our

architecture to learn the geometry of the design

parameters (from the training data) as opposed to

abstract features.

Selected design: MM ‘perfect’ absorber@1.6 THz
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Annotated schematic of a split-ring resonator-based THz absorber (left) and its
corresponding electromagnetic response as a function of frequency

Challenges

* Distinct geometries may yield near-identical EM
response

* There may be no inverse solution for a given EM
response

NETWORK ARCHITECTURE
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Our network has a tandem architecture with a pre-

trained forward model (decoder) connected to an

encoder for inversely predicting the design parameters.

* The input layer comprises of 16 expanded
dimensions obtained by combining geometrical
parameters (/, w, t, c)

* The 161-absorption values as timesteps for the
sequential input to the bidirectional LSTM layer

Why LSTM?
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VALIDATION & RESULTS

* How the tandem architecture performs
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Comparison of predicted (blue) and actual (red) EM responses from the tandem
‘MetaNETSs” model on randomly selected samples from the test set

MetaNETS’ Losses
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Table 1: Model evaluation (Average losses over 5 runs)
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Model Train Validation Test

Forward model
Inverse model (spectrum)
Inverse model (dimensions)

0.0056 0.0057 0.0056
0.004 0.0039 0.004
48.64 5979 53.38
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