THE OBJECTIVE

This work reports a model to custom-design artificially designed composites known as ‘metamaterials’ which demonstrate highly engineerable electromagnetic (EM) properties. Typically, they comprise of 2D or 3D periodic arrays of sub-wavelength conducting elements.

OUR APPROACH

An efficient design scheme encompassing:
- The forward problem (predicting the EM response from a given design), and,
- The inverse problem (generating a design for a desired EM response)

We demonstrate that by treating the EM response data as a time-varying sequence and the inverse problem as a single-input, multiple-output (SIMO) model, we force our architecture to learn the geometry of the design parameters (from the training data) as opposed to abstract features.

Selected design: MM ‘perfect’ absorber @ 1.6 THz

Challenges

- Distinct geometries may yield near-identical EM response
- There may be no inverse solution for a given EM response

Network Architecture

Our network has a tandem architecture with a pre-trained forward model (decoder) connected to an encoder for inversely predicting the design parameters.

- The input layer comprises of 16 expanded dimensions obtained by combining geometrical parameters (I, w, t, c)
- The 161-absorption values as timesteps for the sequential input to the bidirectional LSTM layer

Why LSTM?

Response prediction using a DNN-only baseline model

Response prediction using an LSTM model

References


Valuation & Results

• How the tandem architecture performs

Comparison of predicted (blue) and actual (red) EM responses from the tandem ‘MetaNETs’ model on randomly selected samples from the test set

MetaNETs’ Losses

Predicted vs Actual

Electromagnetic Response prediction

Geometrical Design prediction

DESIGN 1

DESIGN 2

Annotated schematic of a split-ring resonator-based THz absorber (left) and its corresponding electromagnetic response as a function of frequency.