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Abstract

Markov Chain Monte Carlo (MCMC) methods are widely used for Bayesian
inference in astronomy. However, when applied to datasets coming from next-
generation telescopes, inference becomes computationally expensive. We propose
using amortized variational inference to estimate the posterior of a supernova light
curve parametric model. We show that amortization with a recurrent neural network
is significantly faster than MCMC while providing competitive estimates of the
predictive distribution. To the best of our knowledge, this is the first time this fast
amortized framework is applied to supernova light curves. This approach will be
essential when estimating the posterior of astrophysical parameters for terabytes of
data per night that next-generation telescopes will produce.

1 Introduction

Supernovae (SNe) are highly energetic explosions that occur at the end of the life cycle of stars. These
cataclysmic events can be used as extragalactic distance probes and hence are key to further advance
cosmological theories [22, 20]. Parametric models are often used to aid the distance determination
[10], classification [24], and the physical characterization of SNe [9]. One desired property when
performing inference with these models is dealing with the uncertainty present in the data and
predictions. Having uncertainties of our estimates is critical for the scientific interpretation of the
data, e.g., for the selection of well characterized samples for detailed analysis, for understanding the
level of significance of any derived conclusions, or for the reliable identification of extreme or outlier
events based on their physical parameters.

Through the use of Bayesian methods we can obtain uncertainty estimates both for the parameters
of the model and the predictions obtained by it. However, for complex models the posterior of the
parameters may not be analytically tractable. Two possible solutions are the use of Markov Chain
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Figure 1: Amortized variational inference for supernova light curves. The inference networks uses
light curves as input, consisting of the time since the first observation ti, normalized flux fi and
measured error ei and outputs the variational parameters φ for the approximate posterior qφ(θ|x).
Using samples from this posterior we can sample realizations using the parametric model.

Monte Carlo (MCMC) [18, 5] methods to sample from the posterior and Variational Inference (VI)
[15, 4] which optimizes the parameters of an approximate posterior. Both methods present difficulties
in scaling to large datasets because applying them for individual light curves is computationally
expensive for the entire dataset.

Instead, amortized variational inference (AVI) [17, 21], leverages powerful function approximators,
such as deep neural networks, to map the data to the variational parameters directly. This means that
after an offline optimization step for the approximator, amortization allows for fast online parameter
inference by using the trained approximator. Furthermore, through techniques such as stochastic
variational inference (SVI) [12] this approach can scale efficiently to large datasets and even provide
inference in batches.

In this paper, we aim at performing fast Bayesian inference on the observed optical flux evolution of
astronomical objects, or light curves, in preparation for large astronomical surveys such as the Vera
C. Rubin Observatory and its Legacy Survey of Space and Time (LSST) [14]. Specifically, we learn a
recurrent neural network to perform amortized variational inference over the posterior distribution of
a parametric model for supernova light curves.We evaluate our approach on synthetic and real alert
light curves from the Zwicky Transient Facility (ZTF) [2], a precursor to the LSST, and compare it
against MCMC, both in terms of the estimated posteriors and the computational cost required.

2 Amortized Variational Inference

Consider a parametric model f(x;θ) where θ represents the set of adjustable parameters. We consider
performing fast approximate Bayesian inference for f(x;θ). Variational Bayesian methods allow
us to approximate the posterior of this model by introducing a variational distribution qφ(θ) with
parameters φ. The parameters φ are found by maximizing the evidence lower bound (ELBO):

ELBO = Eq[log p(x|θ)]−DKL(qφ(θ)||p(θ)), (1)

which, when using standard variational inference would require performing optimization for each
light curve independently . Instead in AVI we introduce a function g(x) that maps data x to the
variational parameters φ. This means that instead of learning local parameters for each data point we
learn the global parameters of our function g. The introduction of the amortization procedure means
we spend an upfront computational cost in learning g(x). However, once this function is learned,
performing Bayesian inference is reduced to evaluating this function with new observations to obtain
the variational posterior qφ(θ|x). For modeling g, neural networks are commonly used, since they
are flexible function approximators [7] which are capable of modeling the unknown relationship
between data and variational parameters. We apply AVI to infer the parameters of a Sne model from
ZTF alert light curves. The general procedure is illustrated in Figure 1, where the inference network
maps the light curve data to the variational parameters φ of the approximate posterior. After obtaining
qφ(θ|x) we sample θ and reconstruct the input using a fixed parametric SNe model. The inference
network is trained by maximizing the ELBO using SVI [12] which enables scaling to larger datasets.
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3 Methodology

3.1 Generative model

We consider the widely used parametric model introduced by [1]:

f(t) = A
e

−(t−t0)
τfall

1 + e
−(t−t0)
τrise

, (2)

where θ = (A, t0, τrise, τfall) correspond to the parameters of the model. The A parameter is a
scaling factor to accommodate the maximum brightness observed. The parameter t0 corresponds to
the time at which the brightness equals A/2. Finally, the parameters τrise and τfall represent the rise
and fall characteristic timescales of the light curve, respectively. We represent τrise as a fraction of
τfall with a parameter γ such that τrise = γτfall. All parameters are estimated after the light curve
is divided by the maximum flux and time is measured with respect to the time of the first detection.

We assume a normal distribution for the likelihood p(x|θ), with mean given by Eq. 2 and standard
deviation known from the error measurements of the light curves. We assume independent priors
based on astronomical knowledge for p(θ):

log(A) ∼ N (0.397, 0.133)

t0 ∼ N (0, 10)

logit(γ) ∼ N (−3, 1)
log τfall ∼ N (3.47, 0.41)

(3)

This parametrization forces the non-negativity of A and τfall, 0 ≤ γ ≤ 1, and allows for t0 to
have negative values (no observations previous to peak). After exponentiating τfall we add three to
constraint its minimum value. Note that we use the same priors on both MCMC and AVI.

3.2 Inference model

For our variational approximation we use a multivariate normal distribution over log(A), t0, log(τfall)
and logit(γ): qφ(θ|x) = MvN(µ,LLT ), where φ = (µ,L), µ ∈ R4 and L is a 4x4 lower triangular
matrix. The parameters φ are predicted by the inference network, for which we use a Long Short
Term Memory Network (LSTM) [11]. By using a recurrent neural network we can take into account
the variable length and irregular sampling of light curves.

3.3 Experimental Setup

We use both real and simulated light curves for our experiments. The real data consists of a set of
709 supernova light curves from the alert stream of ZTF, downloaded using the API of the ALeRCE
[8, 23] astronomical broker1. We use only the ’g’ filter and light curves with at least 6 reported alerts
and at least 30 days between the first and last observation. The simulated light curves corresponds
to a set of 10, 000 simulations based on the priors used and the real data. Both real and simulated
light curves are normalized before inference by dividing the fluxes and errors by the maximum flux.
We compare our amortized approach with the No U-Turn MCMC sampler (NUTS) [13] from the
Stan [6] package. For each light curve in the dataset we run 4 parallel chains for 6, 000 iterations
discarding the first 2, 000 samples.

The neural network for the amortization is implemented in PyTorch [19] and we use SVI [12] with
Pyro [3]. The network is trained for 1, 000 epochs using the Adam [16] optimizer with a learning
rate of 5 × 10−4 and a batch size of 64, additionally we clip the norm of the gradient to 10. We
employ early stopping during our training, where we set the number of epochs with no validation
improvement before stopping to 50. Experiments were conducted both on CPU and GPU to measure
execution time. The CPU experiments were conducted on a 32 core AMD EPYC processors and the
GPU used for the other experiments corresponds to a NVIDIA V100.

1https://alerceapi.readthedocs.io/en/latest/ztf_db.html
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Synthetic data Real data

MCMC Amortized MCMC Amortized

mean 20.92 18.53 −3.05 −31.45
std 11.42 11.77 150.80 226.63
5% 9.41 8.12 −74.51 −178.84

50% 18.26 16.55 16.16 10.92
95% 41.02 36.99 60.52 42.51

Table 1: Statistics from the distribution of average log-likelihoods.

Method Training Inference

MCMC − 1, 902.74± 183.00

AVI (CPU) 1, 005.10± 37.35 29.04± 0.84

AVI (GPU) 699.25± 29.12 3.79± 0.04

Table 2: Time in seconds to perform inference for 10, 000
simulated light curves. The reported time corresponds to
the mean and standard deviation of 5 runs.

Parameter MCMC Amortized

A 0.11 0.14
t0 1.25 1.73
τfall 2.70 4.63
τrise 0.98 1.16

Table 3: Median absolute deviation be-
tween the median marginal posterior and
the parameter used for the simulation.

4 Results

We evaluate the average log-likelihood for both synthetic and real light curves when the parameters
are sampled from the posterior distribution. The distribution of the average likelihood for the data
is shown in table 1. We consistently see that the amortized posterior presents lower likelihood than
MCMC. However, we can observe that for both synthetic and real data, the median log-likelihood
between both approaches remains close.

Table 2 shows the average time required to train the model and infer the parameters in the 10, 000
synthetic light curves set using MCMC and AVI. Although training is slower, our approach is ∼ 65
times faster when performing inference on CPU and ∼ 500 times faster on GPU. Experiments for
MCMC are performed using the CPU. This enables the use of approximate inference for future
massive surveys, where new alerts arrive on a night by night basis.

For the simulated light curves, we compute the median absolute deviation (MAD) between the known
parameter used in the simulation and the median marginal posterior. Table 3 shows that the amortized
posterior presents higher MADs compared to MCMC as expected, notably, this error is higher in the
tfall parameter, indicating possibly worse fits for the decline of the light curve. This indicates that
the decline of the light curves present worse fits than MCMC. On the other hand, for the parameters
A and t0 both approaches exhibit similar errors, with only a difference of 0.5 days for t0.

Finally we compare samples from the predictive distribution for real light curves. This is shown in
Figure 2, where the top and bottom rows correspond to draws from MCMC and AVI for five selected
light curves, respectively. We observe that both methods provide visually similar fits, although AVI
predictions are slightly more biased than MCMC. At the same time MCMC provides predictions with
higher uncertainties than AVI.

5 Conclusions

With the increase in size of current and future astronomical datasets, classical techniques for Bayesian
inference are presented with difficulties in scaling. In this work we used AVI to estimate the
posterior of the physical parameters from supernova light curves. The amortized posterior can be
obtained significantly faster than MCMC once the inference network is trained, enabling fast Bayesian
inference for incoming astronomical surveys like the LSST [14]. As future work we will test this
methodology using physical models of other types of transient astronomical objects.
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Figure 2: Random samples from the predictive distribution when sampling from the posterior for real
data. Top row corresponds to MCMC posterior, bottom row are samples from the amortized posterior.
Each example has the log-likelihood shown in the top right corner.

Broader Impact

We believe that the use of amortized inference serves as a first step towards performing Bayesian
inference on demand for next generation surveys such as the LSST. For the particular case of
Supernovae, having reliable physical parameters and uncertainties will help advance current studies
on the physics of these objects and on the large-scale structure in the Universe. The proposed
methodology can also benefit studies on other astronomical objects simply by changing the physical
model that maps parameters to light curves and the priors.

The posterior distributions obtained using the proposed method can be used as an input to design
follow-up rules, i.e. to trigger third-party telescopes to follow novel and/or interesting targets. For the
particular case of fast transients follow-up should ideally start as soon as the alerts from the main
survey arrive. Quick methods such as the ones proposed in this paper would avoid missing such
follow-up targets in the massive streams of near future surveys.
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Appendix

The architecture used for our inference network is shown in Figure 3, we use an LSTM to process the light curve
data and then two fully connected networks of two layers each to estimate the parameters of the multivariate
normal approximation.
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Figure 3: Inference network architecture.
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