
Partial-Attribution Instance Segmentation for
Astronomical Source Detection and Deblending

Ryan Hausen
Department of Computer Science and Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064
rhausen@ucsc.edu

Brant Robertson
Department of Astronomy and Astrophysics

University of California, Santa Cruz
Santa Cruz, CA 95064
brant@ucsc.edu

Abstract

Astronomical source deblending is the process of separating the contribution of
individual stars or galaxies (sources) to an image comprised of multiple, possibly
overlapping sources. Astronomical sources display a wide range of sizes and
brightnesses and may show substantial overlap in images. Astronomical imaging
data can further challenge off-the-shelf computer vision algorithms owing to its
high dynamic range, low signal-to-noise ratio, and unconventional image format.
These challenges make source deblending an open area of astronomical research,
and in this work, we introduce a new approach called Partial-Attribution Instance
Segmentation that enables source detection and deblending in a manner tractable
for deep learning models. We provide a novel neural network implementation as a
demonstration of the method.

1 Introduction

Astronomical images can contain tens of thousands of stars and galaxies (sources). Forthcoming
telescopes including the Vera Rubin Observatory [11, 12], James Webb Space Telescope [26], and
Nancy Grace Roman Space Telescope [24, 25] will push the current limits of observational astronomy
and dramatically increase the number of sources to analyze. To measure accurate properties for these
sources, we must detect sources by identifying statistically significant local maxima in an image and
deblend sources by isolating the potentially overlapping flux distributions of each object. Consider a
background-subtracted astronomical image I ∈ Rh×w×b in which n sources are observed, where h
is the height, w is the width, and b indicates the number of astronomical passbands. The image I can
be decomposed into a sum of individual object contributions as

I =

N∑
i=1

Si + ε (1)

where Si ∈ Rh×w×b represents the flux contributed to I by source i, and ε ∈ N (0, σ) is the
approximate noise distribution in the image. The process of decomposing an image into the form
of Equation 1 represents the core challenge of source deblending. This submission presents a deep
learning-based method to perform detection and deblending on astronomical images.
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Table 1: Detection and deblending method categorization

Name Detection Capacity Deblend Type

SExtractor[2] N Disjoint
Morpheus[7] N Disjoint
Mask R-CNN[4] N Intersecting/Discrete
blend2mask2flux[3] 2 Intersecting/Discrete
Modified SRGAN[22] 0 Intersecting/Continuous
SCARLET[19] 0 Intersecting/Continuous
This Work N Intersecting/Continuous

1.1 Related Work

Source detection and deblending are well-studied problems in astronomy, and many approaches have
been developed. Below, we highlight some popular and recent methods for source detection and
deblending and point the interested reader to the review by Masias et al. [18].

Detection and deblending methods can be characterized by their detection capacity and deblend type.
The detection capacity represents the number of sources a method can detect within a single image.
For Equation 1, a detection capacity of N would indicate that a method could detect all sources
appearing in an image. The deblend type indicates how the flux in a single pixel may be split between
overlapping (blended) sources. A disjoint deblender assigns all flux in a pixel to a single source
exclusively. An intersecting/discrete deblender can assign the flux to more than one source with
uniform weighting across pixels. Finally, an intersecting/continuous deblender can assign the flux to
more than one source with variable weighting across pixels.

Astronomical analysis methods vary in their detection and deblending methods. Bertin & Arnouts
[2] introduced SExtractor that uses a convolution and thresholding approach for detection, and an
isophotal analysis using binned pixel intensity for deblending. Hausen & Robertson [7] introduced
Morpheus, a U-Net [23] style convolutional neural network (CNN) model that filters out background
pixels, uses a thresholding approach for detection, and combines watershed and peak finding algo-
rithms for deblending. Another U-Net based model called blend2mask [3] performs detection and
deblending using the U-Net alone. Reiman & Göhre [22] use a modified Super-Resolution GAN
(SRGAN) [16] to deblend overlapping sources. Burke et al. [4] trained a Mask R-CNN [8] model to
detect and deblend sources. SCARLET [19] deblends sources using constrained matrix factoriza-
tion. Table 1 summarizes the features of these previous methods, none of which have a detection
capacity of N and an intersecting/continuous deblend type. We now present a deep learning-based
intersecting/continuous deblending algorithm with a detection capacity of N .

2 Partial-Attribution Instance Segmentation

Partial-Attribution Instance Segmentation (PAIS) is a new extension of the instance segmentation
paradigm that allows for weighted, overlapping segmentation maps. PAIS differs from other seg-
mentation schemes like cell segmentation [28], interacting surface segmentation [27], and amodal
instance segmentation [17]. PAIS aims to isolate objects appearing in an image while preserving their
measurable quantities within areas of overlap. For PAIS, we can approximate Equation 1 as

Ĩ =

N∑
i=1

Mi � I (2)

where Ĩ ∈ Rh×w×b estimates the background-subtracted flux image I in Equation 1, Mi ∈
[0, 1]h×w×bst.

∑N
i Mi,jkl = 1 constitutes the pixel-level fractional contribution of source i to

I, and � symbolizes the Hadamard product. Equation 2 is tractable for deep learning models,
allowing the model to learn the bounded quantities Mi rather than the unbounded source images Si.
The N number of sources setting the upper limit of the sum in Equation 2 can differ for each image.

To construct a PAIS format that can be represented by a CNN, we have to construct an encoding for
the Mi in Equation 2. Inspired by Cheng et al. [5] and Kendall et al. [13], we propose an encoding for
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Table 2: Partial Contribution Representation encoding efficacy

Test Value

Total Source Flux [e/s] (MAE) 1.97± 15.43
Two-Sample KS Test p-value 0.93± 0.22

the Mi components called Partial Contribution Representation (PCR). The goal of PCR is to encode,
for any single pixel (j, k, l), the fractional contribution to its intensity from the closest n sources.
Using PCR, a variable number N of sources can be encoded per image. PCR consists of three tensors:
the Center-of-mass Cc ∈ {0, 1}h×w, Contribution-vectors Cv ∈ Rh×w×n×2 and Contribution-maps
Cm ∈ [0, 1]h×w×b×n. The center-of-mass encodes the locations of all the sources in an image. For
any pixel, we set Cc

jk = 1 if that location indicates the center of a source and Cc
jk = 0 otherwise. The

contribution-vector Cv
jk encodes the Cartesian offset to the closest n sources. The contribution-map

Cm
jkl connects the fractional contribution of the n sources with the associated contribution-vectors

Cv
jk. The fixed dimensionality of Cc, Cv , and Cm make PCR tractable for deep learning algorithms.

3 Our Approach

Our approach consists of making a PAIS dataset leveraging PCR and is implemented using a novel
neural network architecture. We summarize our dataset, model, and training method below.

3.1 Dataset

To generate the PAIS input samples, we used the Hubble Legacy Fields (HLF) GOODS-South
F160W (1.6µm) flux images [10], along with the 3D-HST source catalog [20]. The HLF images
were split into training and test sets of 256 × 256 pixel subregions, with 2,000 training samples
and 500 test samples. The input labels, as described in Section 2, consist of the center-of-mass
images Cc, the contribution-vectors Cv , and the contribution-maps Cm. The center-of-mass training
images are generated in a manner similar to Cheng et al. [5], by placing pixelated 2D Gaussians
with standard deviation σ = 8(pixels) at the locations of sources in the 3D-HST catalog. The
contribution-vectors, an extension to the method by Cheng et al. [5], are generated from the Cartesian
offset to the nearest n = 3 sources to each pixel. The contribution-maps require the Mi values
from Equation 2. To determine Mi, we use SCARLET [19] with the F125W, F160W, F606W, and
F850LP flux and weight images from the HLF GOODS-South data and the TinyTim point-spread
functions [15] to deblend the sources from the 3D-HST catalog. We then use PCR to encode the
Mi from SCARLET. The complete dataset generation routine can be found in our project repository
(https://github.com/ryanhausen/morpheus-deblend/ ).

To evaluate the efficacy of PCR to encode Mi, we define two metrics. We use the mean difference
between the total flux determined by the SCARLET encoded Mi for each input source and that
recovered by our encoding. We also use a two-sample Kolmogorov–Smirnov (KS) test to compare
the normalized cumulative surface brightness profile within the radius encompassing 90% of the
total flux of each source to evaluate the encoding of the spatial flux distribution. Table 2 reports
the results and demonstrates that PCR encoding approximately preserves both the total flux and the
spatial flux distribution for each source. With this verification, we can train a network to recover the
PCR encoding for each input HST F160W image.

3.2 Model

To recover the PCR for training images, we developed a novel neural network architecture inspired
by Cheng et al. [5], based on the Fast Attention Network [9] and implemented in TensorFlow [1].
The model features two decoders that share a single encoder. The first decoder, called the spatial
decoder, predicts values for Cc and Cv . The second decoder, called the attribution decoder, predicts
values for Cm. The complete model code can be found in the repository for this project (https:
//github.com/ryanhausen/morpheus-deblend/ ). An end-to-end example of the model can
be seen in Figure 3.2.
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Figure 1: End-to-end example using our method to detect and deblend sources. Starting from the
left: A flux image is input to the Model (see Section 3.2). The Model outputs the deblended image
in the Partial Contribution Representation (PCR; see Section 2).The output from the model is then
decoded using the non-learned PCR Decoder algorithm into separate deblended source images. The
deblended source images have their total flux within r90 annotated. The deblended source images
are then added together to generate the reconstructed image which has an L1 total flux difference of
1.52× 10−5 with the original input image.

Table 3: Training metric results

Metric Training Test

MAE 27.0183± 1.0658 28.5090± 0.3386
MSE 0.0114± 0.0001 0.0124± 0.0006
cross-entropy 0.9485± 0.0069 1.0806± 0.0098

3.3 Training

To train the model to recover the PCR of the input images, we use the Adam Optimizer [14] with
a learning rate of 5 × 10−5, β1 = 0.9, β2 = 0.9999, ε = 1 × 10−7, and a batch size of 100. The
model was trained for 1000 epochs using an NVIDIA V100 32GB GPU, taking 31 hours. The loss
function for the model is composed of three functions. The spatial decoder outputs for Cc and Cv are
penalized according to mean squared error (MSE) and the mean absolute error (MAE), respectively.
The attribution decoder output Cm is penalized using cross-entropy loss with an additional entropy
regularization term. In practice, we found that the additional entropy regularization helped incentivize
the network to learn information about multiple sources in Cm. Each loss term is weighted and
combined into a single loss function described by

Ltotal = λCcLCc + λCvLCv + λCmLCm + λSLS , (3)

where LCc is the MSE loss calculated between the model output and input label with λCc = 15, LCv

is the MAE loss calculated between the model output and input label with λCv = 0.06, LCm is a
cross-entropy loss calculated between the model output and input label with λCm = 4, and LS is
the entropy regularization on the model Cm output with λS = 2. See Table 3 for a summary of the
training results, demonstrating a good balance between test and training error. A complete log of
training experiments is available at (https://www.comet.ml/ryanhausen/morpheus-deblend/
).

4 Discussion and Future Work

In this work, we introduced the Partial Attribution Instance Segmentation (PAIS) scheme for astro-
nomical source debelending. We presented Partial Contribution Representation (PCR) as a method
for implementing PAIS within deep learning-based models. We demonstrated the efficacy of PCR
for encoding the results of existing astronomical deblenders, and developed a novel neural network
architecture to recover the PCR from input flux images. While we demonstrated deblending for
single band (F160W) images, PCR can be extended to multiband images. As with many supervised
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methods, our model requires labeled training data. To apply this method on other survey datasets
may require the use of transfer learning [6, 21] or retraining.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The claim in the abstract is that we formed a novel
approach to deblending. That claim is supported in Section 1.1 a brief survey of related
work and in Section 2, describing the new formulation of the problem and in Section
3.2, describing the novel architecture.

(b) Did you describe the limitations of your work? [Yes] See Section 4, we note dependence
on training data and potential requirement to apply transfer learning/retraining on
another astronomical image dataset.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 6.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] In Sections 3.1
and 3.2 we reference the github repo for project which contains the code to reproduce
the dataset, the model, and train the model.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Section 3.3, we include the training hyperparameters along
with a URL to all of our experiment logs.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report error bars for both the model (see Table 3) and
the encoding (see Table 2).

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The type of GPUs used is
mentioned in Section 3.3 and the particular compute resources are mentioned in the
acknowledgements.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Section 3.1 we

cite the resources used to generate the dataset. In Section 3.2 we cite TensorFlow as
the software used to write to model. If the reviewers would like, we can add a software
section to the paper to include references to more common software like Python. I
didn’t see any guidance on for this in the NeurIPS style guide.

(b) Did you mention the license of the assets? [No] We are not reproducing any of the
assets.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The code to reproduce the dataset and the model is available in the repository for the
project which is listed in the paper. The code is available under the MIT license.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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