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Abstract

Both time-domain and gravitational-wave (GW) astronomy have gone through a
revolution in the last decade. These two previously disjoint fields converged when
the electromagnetic (EM) counterpart of a binary neutron star merger, GW170817,
was discovered in 2017. However, despite the discovery rate of GWs steadily in-
creasing, by several folds in each observing run of the LIGO/Virgo GW instruments,
GW170817 remains the only success story of EMGW astronomy. While future
GW detectors will detect even larger number of events, this does not guarantee
corresponding increase in the number of EM counterparts discovered. In fact, the
growing number is overwhelming since wide-field telescope surveys will have to
contend with distinguishing the optical EM counterpart, called a kilonova, from
the ever increasing number of “vanilla” transients objects they encounter during a
GW follow-up operation. To this end, we present a novel tool based on a temporal
convolutional network (TCN) architecture for Electromagnetic Counterpart Identi-
fication (El-CID). The overarching goal of El-CID is to slice through list of objects
that are consistent with the GW sky localization, and determine which sources
are consistent with kilonovae, allowing limited and judicious use of telescope and
spectroscopic resources. Our classifier is trained on sparse early-time photometry
and contextual information available during discovery. Apart from verifying our
model on an extensive testing sample, we also show succesful results on real events
during the previous LIGO/Virgo observing runs.

1 Introduction

The field of gravitational waves (GWs) has moved swiftly since the discovery in 2015 [1]. The number
of discovered events have increased more than an order of magnitude over the last five years, from
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three events in the first observing run of the LIGO/Virgo GW instruments, to more than thirty in the
most recent catalog [2]. One of the more interesting topics related to GWs today is the prospect to do
multi-messenger astronomy with them – observing the same source in GWs, EM radiation, and other
high-energy astrophysical probes. Of relevance to this work is the joint detection of GWs from binary
neutron star mergers and the optical component of the EM radiation resulting from the radioactive
decay of heavy elements produced in the aftermath, called a kilonova [3]. While this was hypothesized
decades back [4], the first discovery happened in 2017 when GWs from a binary neutron star merger,
GW170817, [5, 6] was followed by the exhaustive observation of the kilonova, AT 2017gfo, in the
hours through days following discovery [7, 8, 9, 10, 11, 12, 13]. Such joint observations provide rich
observational data for astronomy, astrophysics, cosmology, and fundamental physics [14, 15, 16, 17].
Starting from the third LIGO/Virgo observing run, O3, in 2019-2020, there has been been several
efforts towards coordinating GW follow-up [18, 19]. However, it can be safely said that there was
disappointment when O3 concluded without another coincident kilonova observation.

While the growing number of GW discoveries brings hope to detect more counterparts, we are also in
the era of where transient discovery is profuse [20]. Today, a typical photometric telescope survey
detects several thousands of new supernovae yearly for example. Therefore, it is challenging to
detect the more exotic transients like kilonovae even in the case of targeted searches. Going ahead,
follow-up teams will have to contend with the fact that a search for the kilonova will be confounded
by several other, more “vanilla” objects, like supernovae whose astrophysical rates are several orders
of magnitude greater than binary neutron star (BNS) mergers. This was already witnessed during
O3. A visual description of the scenario we envision is shown in left panel of Fig. 1. Here, we
show a fiducial GW sky-localization (skymap) along with the true location of the kilonova using
symbol ‘x’. But there maybe several objects, like supernovae, represented by solid circles that maybe
temporally coincident with high-confidence portions of the skymap. It may not be possible to perform
spectroscopic analysis on all the candidates in a timely manner. Hence the motivation of creating
a classifier that will be able to distinguish the kilonova from other objects using the initial sparse
photometric data, and other contextual information that is available during discovery time.

2 Methodology

2.1 Dataset preparation: Connecting binaries to observed lightcurves

17h00m 16h00m

60◦

50◦

Figure 1: An hypothetical scenario of a targeted
GW follow-up – the true EM counterpart to the
GW, the kilonova, is shown using the “x” symbol.
There maybe other objects, like supernovae, in the
field of view. These are shown using the solid
circles.

We build an end-to-end dataset starting with an
ensemble of BNS mergers. From this ensem-
ble, we determine which systems are detected in
GWs by the LIGO/Virgo/KAGRA instuments
based on their sensitivity in future observing
runs. This step involves determining whether
the system produces a GW strain that produces
a signal-to-noise (S/N) ratio ≥ 8 (typical thresh-
old) in at least two GW detectors. The result
depends on the noise realization of the era. We
consider both the upcoming fourth observing
run, O4, and the design sensitivity era indepen-
dently. The results presented here are the for
the former case, but the results are qualitatively
similar for the latter case. In the event the sig-
nal is detected, the S/N time-series is used to
produce a GW sky-localization (skymap). The
fundamental principle utilizes the timing differ-
ence in arrival of the signal in different detec-
tors to create a probability density map in sky
coordinates. This is done using the rapid sky-
localization algorithm, BAYESTAR [21] that is
used in LIGO/Virgo realtime discoveries. Next,
we connect the binary properties to the ejecta
properties. Among the factors affecting the prop-
erties of the kilonova the most important is the
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mass ejected from the aftermath of the merger of two stars and equation of state of the star. In order
to map the binary parameters like masses and spins of the components to the ejected mass, we use an
empirical fit developed in Ref. [22] from numerical relativity merger simulations of BNSs. The ejecta
properties then determine the spectral evolution of the kilonova in time in different filters i.e., its
lightcurve. Theoretical modeling of kilonovae is still in its infancy – several models and parameteri-
zations exist to describe the same physical system. We use the models by Bulla [23] and Kasen [24]
which have been widely used in the literature earlier in the analysis of AT 2017gfo [9, 25]. Hence for
every binary, we are able to obtain a kilonova spectral energy density (SED). To get the observed
lightcurve, we use the Supernova Analysis library, SNANA. One of the primary use case of SNANA
is in simulating observed lightcurves given a survey cadence accounting for instrument detection
uncertainties and sky noise. A notable effort in supervised classification of lightcurves using SNANA
is the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC) [26, 27].
This challenge was hosted publicly on the Kaggle platform 1 to classify millions of lightcurves in
the era of the Rubin Observatory [28]. In this study, however, we use the observing schedule of the
Zwicky Transient Facility’s (ZTF) from its third data release. ZTF has participated actively in the
follow-up of GWs, and therefore we make the choice for this work. Also, ZTF will be participating
in the GW follow-up in the coming observing run. In the Appendix, we show some examples of
lightcurves of the KNe and other objects (see Fig. 5). We also verify that there is no selection effect
in choosing one model over the other in the data preparation step (see bottom panel of Fig. 5).

2.2 Simulating rest of the sky

The steps in the above section provides us with a skymap and a KN lightcurve for each BNS simulation
that is detected i.e., analogous to the skymap and the ‘x’ symbol in Fig. 1. To simulate other objects
that will pollute the search for a KN, we use SNANA along with the same ZTF DR3 cadence for a
variety of supernova models and tidal disruption events.2 In this study, we restrict to extragalactic
transients, but this will be extended in the future to include galactic transients like M-dwarf flares
which could have similar time scales as KNe. For each of the detected GW event, we use a window
of a week to select other objects that had their first detection in this period. This is because we
expect a typical KN to reach peak brightness within a few days from the time of the GW trigger.
If the first detection is outside this window the new object is unrelated to the GW event. We rank
the objects based on the line-of-sight probability value of the skymap, and select the top 20 to be
contaminant. While is this an empirical choice, we have verified that changing this number does not
have a significant effect on the performance of the classifier. Details of breakdown of the object types
and numbers is presented in Appendix A.2.

3 Binary classification using TCN

During the early hours through days following a BNS GW candidate, the primary question for a
new EM candidate is whether it is/isn’t associated with the GW event. We, therefore, consider
the problem from a binary classification standpoint. For our feature set we consider the ∼ 1 week
lightcurve data of the objects from Table 1. Every object has different timescale features e.g., rise/fall,
and color evolution in different passbands which the network is able to learn with more incoming
data. In addition to the lightcurves, we also supply important contextual information in the form
certain feature of the skymap. We have this because all objects in our dataset have a skymap just
like the scenario for a real GW follow-up. We use the line-of-sight probability for the object, and
the angular offset from the mode of the distribution. This is important contextual information since
KN are expected to have high correlation with the high-probability regions of the skymap compared
to the other objects which would be uncorrelated. The offset is important since for GWs detected
in two-detectors, the skymap can have a ring-like profile in the sky. We additionally supply the
90% sky-localization area as another feature. Note that, unlike the time-series data of the lightcurve,
the contextual information are constant, repeating arrays of the same length as the lightcurve. The
contextual information allows the network to put a prior score to candidates even in absence of
photometric data. We use a temporal convolutional network (TCN) [29] as implemented in Ref. [30]
using the open-source library Tensorflow [31]. The network is similar to that used in Ref. [32] for

1https://www.kaggle.com/c/PLAsTiCC-2018
2These are a subset of the types used in for PLAsTiCC [26] – SALT2 SNIa, SNII NMF model, SNII Vincenzi

model, SNIa 91bg, SLSN, SNIax, SNIbc.
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Figure 2: Left: Basic architecture of a TCN (see Ref. [29]). The convolutions are causal and therefore
suited to learn temporal features. Right: The block diagram of our network.
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Figure 3: Top: Photometry of AT 2017gfo from different instruments Bottom: Binary classification
score of being a “Kilonova” or “Other”.

realtime classification of different classes of supernovae. The convolutions of a TCN are causal
and therefore suited to learn temporal features which is of interest here (see Fig. 2). We linearly
interpolate the lightcurves with a periodic interval of ∼ 0.7 days. This choice was made by analyzing
the distribution of time difference between consecutive observations of the KNe and considering the
80-percentile. While this is an empirical choice, excessively larger time steps decimate temporal
features and excessively smaller time steps cause unexpected, jittery behavior. This pre-processing
step is required to prepare uniformly sampled arrays of the lightcurve. We consider a total length of
12 i.e., about a week post the GW trigger. Our temporal array is 3-dimensional – one each for the
flux in each ZTF filter (g, R, and i). Additionally, we supply the 3 contextual information mentioned
above. Thus, our input arrays have the shape 6x12. The labels are “Kilonova” or “Other”. We use
32 channels for the TCN with a droptout rate of 5% during training. We use a convolution kernel of
size of two, two dilation layers, and also a stack size of two. During training, we use the categorical
cross-entropy loss and the Adam stochastic optimizer as implemented in Tensorflow. We show a
block diagram of our network in the right panel of Fig. 2. We train our network for 20 epochs using
60% of the dataset for training and 40% for validation.
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Figure 4: Left: Observational data of AT 2019npv taken from Ref. [33]. Right: El-CID score.

4 Results

The classifier achieves ≥ 99% accuracy at ∼ 3 days, i.e., in about 3 days of photometric data, the
classifier is able to distinguish a KN. We verified that increasing the number of channels does not
have significant performance improvement. To verify the accuracy on unseen data, we used kilonovae
lightcurves swapping out the ZTF observing schedule with that of the Rubin Observatory as used in
PLAsTiCC. This would corresponding the hypothetical situation if Rubin was in operation during
LIGO/Virgo fourth observing run, and also verify that the classifier is not learning cadence. We found
that performance is not affected and verifies the fact that the classifier is learning temporal features as
desired. We provide more details in Appendix A.3. Finally, we test our trained classifier on the real
data. Unfortunately, AT 2017gfo remains the only exhaustively studied KN till date with data from
instruments all over the world. We use the photometric data publicly available at the Open Kilonova
catalog. 3 Note that this data was not a part of the training sample. In Fig. 3 we show data from a
few different instruments. We find that the correct classification in obtained within a few epochs
of data acquisition. Note that this once again verifies the robustness to instrument cadence as the
observations are not only from different instruments, but also likely taken at an aggressive targeted
cadence which can be significantly different from the usual nightly cadence of a survey. We also
test our classifier on AT 2019npv, [33] which was a SNIbc that was coincidentally discovered at a
high confidence region of the skymap of GW190814, [34] and raised interest as a KN doppelganger
during the first few days of discovery [35, 36, 37, 38, 39, 40] (see Appendix A.4). We find that the
classifier is able to rule out the object as not a KN within the first few days of data acquisition. This
showcases the use case of a tool like El-CID.

5 Societal and negative impacts

Our dataset, scope, and purpose is entirely limited to astrophysical processes and therefore we don’t
envision any impact on society. If our classifier is adopted by astronomical broker teams for nightly
operations, the event of erroneous results from our classifier might lead to telescope and spectroscopic
resources following-up candidates that are not related to a GW merger.
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Figure 5: Top: Example lightcurves of KN from the Bulla and Kasen models. Middle: Example
lightcurves from two supernova models. Bottom: The distribution of detected Bulla KNe (left) and
Kasen KNe (right). We observe that there is no bias in selecting one KN model over the other in the
dataset.

A Appendix

A.1 Example lightcurves

In Fig. 5 top panel we show some example KN lightcurves from both Bulla and Kasen models, in
the middle panel, we show example of other objects, and in the bottom we show the distribution of
the recovered Kasen and Bulla KNe in the sky, colored by their cosmological redshift. We note the
empty patch being the galactic plane where there are no extra-galactic observations. We also verify
that there is no preference towards either model in this step of data preparation i.e., the distribution is
not model specific.
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Table 1: The table lists the number count of different types of objects used for training

Object Type Number count
Bulla KN 5126
Kasen KN 3707

SALT2 SNIa 24670
SLSN 16926

SNII NMF 24232
SNIa 91bg 28620

SNIax 21686
SNIbc 21258
TDE 19359

Vincenzi SNII 19909
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Figure 6: Top: Lightcurves generated in g, R, i bands using the Rubin Observatory observing
schedule. Bottom: The prediction of trained classifier on unseen data generated using Rubin
Observatory observing schedule. We observe that most of the objects (113/115 here) have been
correctly classified as KNe.

A.2 Object counts

In table 1, we show the number count of the different object type in our dataset.

A.3 Performance on unseen LSST lightcurves

To verify that the classifier is not learning the cadence of the training set, we verify by preparing a
dataset of KNe that with the LSST observing strategy. In Fig. 6 we show the performance of the
classifier on unseen LSST lightcurves. We find that most of the objects are correctly classified.

A.4 Skymaps of GW170817 & GW190814

In this section we show the skymaps of the GW events GW170817 & GW190814. GW170817 was
a merger of two neutron stars that produced the kilonova AT 2017gfo. GW190814 was a merger
of a black-hole with a low-mass component compoenent, the nature of which is still unknown.
AT 2019npv was consistent with the skymap of GW190814. From visual inspection of the initial
photometry it was considered an object of interest and followed up. Later spectroscopy revealed it to
be a type Ibc supernova, unrelated to the GW event.

A.5 Code and data

El-CID is based on the architecture used for the real-time supernova classification code RAPID [32].
At the time of submission, the source code exists as a branch in the following repository: https:
//github.com/deepchatterjeeligo/astrorapid/tree/kn-rapid. GW binaries were sim-
ulated using lalapps_inspinj tool which is a part of LALSuite [41]. Noise curves for GW
instruments were used from LIGO DCC: https://dcc.ligo.org/LIGO-T2000012/public.
Mock S/N time-series was generated using the bayestar-realize-coincs tool from the
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Figure 7: Left: The skymap of GW170817. The ‘x’ shows the location of AT 2017gfo. Right: The
skymp of GW190814. The inset shows a zoomed-in image of the primary mode, and ‘x’ shows the
location of AT 2019npv.

ligo.skymap (https://lscsoft.docs.ligo.org/ligo.skymap/). Mock skymaps were created
using the BAYESTAR algorithm [21]. Bulla and Kasen kilonova SED models are available as package
data of SNANA available at https://doi.org/10.5281/zenodo.4728252. SNANA project is
publicly available at https://github.com/RickKessler/SNANA with installation instruction.

The computationally expensive part of this work was the data generation. Kilonova and other
lightcurves were created at the Cori cluster at the National Energy Research Scientific Computing
Center (NERSC). The sky-localizations were created at the Illinois Campus Cluster maintained by
NCSA. Training the neural network takes considerably less resources – ∼ 5 minutes on 8 Intel core-i7
processors.
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