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Abstract

In many cyber-physical systems, imaging can be an important but expensive or
‘difficult to deploy’ sensing modality. One such example is detecting combustion
instability using flame images, where deep learning frameworks have demonstrated
state-of-the-art performance. The proposed frameworks are also shown to be quite
trustworthy such that domain experts can have sufficient confidence to use these
models in real systems to prevent unwanted incidents. However, flame imaging is
not a common sensing modality in engine combustors today. Therefore, the current
roadblock exists on the hardware side regarding the acquisition and processing of
high-volume flame images. On the other hand, the acoustic pressure time series is
a more feasible modality for data collection in real combustors. To utilize acoustic
time series as a sensing modality, we propose a novel cross-modal encoder-decoder
architecture that can reconstruct cross-modal visual features from acoustic pressure
time series in combustion systems. With the “distillation" of cross-modal features,
the results demonstrate that the detection accuracy can be enhanced using the virtual
visual sensing modality. By providing the benefit of cross-modal reconstruction,
our framework can prove to be useful in different domains well beyond the power
generation and transportation industries.

1 Introduction

In aerospace and energy industries, ultra-lean premixed combustion is preferred to make gas turbine
engines more fuel-efficient with lower cost and low NOx (nitrogen oxides) emissions. With this
attempt to make engines efficient and environment-friendly, such operating regimes can make engines
more prone to an undesirable phenomenon called combustion instability, which is caused by the
establishment of a positive feedback loop between heat release rate fluctuations and fluctuating
acoustic pressure [[1]. Combustion instability can lead to large levels of vibration in an engine [2} 13|]
resulting in huge revenue loss due to poor performance, reduced life, or catastrophic failure of engine

[4].

Previously, researchers have studied combustion instability using full-scale computational fluid
dynamics [5]], physics-based [6] and reduced order [7] modeling approaches. An alternative is to
implement data-driven methods utilizing acoustic pressure time-series [8, (9, [10], based only on
acoustic pressure time series, which can sometimes be inaccurate due to interference from broadband
background noise. With the rapid development in the field of computer vision, the application of deep

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



Bl == @E::> = =0l

Reconstructed
Flame Image 128-D Image Image
(64x64) Embedding {64x64)

Figure 1: The encoder and decoder of the convolutional autoencoder model used for pre-training.

learning models has started in this domain to detect instability from flame images [L1} 12} 13|14} [15]].
The image-based deep learning frameworks have proved to be accurate, trustworthy and can build
the confidence of domain experts to implement these models in real systems to detect combustion
instability. However, the current roadblock exists on the hardware side.

Acquisition and processing of high-volume flame image data may not be feasible to perform fast
enough using existing commercial hardware. Also, flame imaging is not a common sensing modality
in engines today. Therefore, the image-based deep learning frameworks can only become feasible with
rapid improvement in the hardware sector. Acoustic pressure time series is a more feasible modality
for data collection in real combustors. To circumvent the hardware roadblock and simultaneously
ensure high detection accuracy, the optimal solution can be to utilize acoustic time series as a sensing
modality and implement image-based deep learning models. In this work, we attempt to think in that
direction by proposing a novel virtual sensing model (VSenseNet) to reconstruct cross-modal visual
features from acoustic pressure time series in combustion systems. While researchers have proposed
cross-modal reconstruction models for text-to-image [16} 17} [18]], and speech-to-face [19, [20], there
has been no work on the reconstruction of visual features from time series in any application domain.

Contributions. We summarize the contributions of this work as follows:

1. To the best of our knowledge, this is the first work on cross-modal reconstruction of visual
features from time series in any domain. The proposed cross-modal encoder-decoder model
VSenseNet is novel in the context of combustion systems to reconstruct flame images from
acoustic pressure time series.

2. In VSenseNet, visual reconstruction from time series is achieved by training the encoder-
decoder with “distillation" of cross-modal features from models pre-trained on images.
During testing, the classification performance of synthetic images is compared against that
of actual images.

3. With acoustic time series as the sensing modality, we demonstrate that instability detection
accuracy can be enhanced using our proposed virtual sensing modeling approach. VSenseNet
can prove to be a great resource in different sectors where imaging is an important but
‘difficult to deploy’ sensing modality.

2 Virtual Sensing Model

To address the hardware roadblock of flame image acquisition, to use acoustic time series as sensing
modality, and to simultaneously utilize an image-based detection framework for better accuracy, we
propose a novel cross-modal encoder-decoder virtual sensing model VSenseNet.

Convolutional Autoencoder Pre-Training: The first step is to utilize the training dataset of flame
images to pre-train a convolutional autoencoder (Fig.[I)), which comprises an image encoder and
an image decoder. From the 128-dimensional embedding computed by the encoder (using 2D
convolutional and 2D max-pooling layers), the decoder attempts to reconstruct the original flame
image as closely as possible using a series of 2D up-sampling and 2D convolutional transpose layers.

Time Series Encoder: The training framework of VSenseNet consists of the time series encoder
to compute an embedding from the time series. Long Short Term Memory (LSTM) networks can
effectively capture long-term temporal dependencies [21], and LSTM networks are effective in
different applications involving time series data [22]. We develop the time series encoder model
consisting of two LSTM layers with dropout added after each layer to prevent over-fitting. The last
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Figure 2: Training framework of VSenseNet. It comprises two steps. The first step is to train the time
series encoder. The next step is to train the image decoder and image classifier utilizing reconstruction
loss and classification loss.

hidden state of the second LSTM layer is considered the compressed information for the time series.
After that, a fully connected layer is used to get a 128-dimensional time series embedding.

VSenseNet: VSenseNet has an image classifier model in the training framework (Fig. [2)) apart from
the time series encoder and the image decoder. The training framework consists of two steps. In
the first step, the time series encoder is trained to regress to the image embedding computed from
the pre-trained image encoder. With the time series as input, the time series encoder computes a
128-dimensional time series embedding. The learning objective is to minimize the embedding loss
(MSE) between the time series and image embedding. In the next step, the image decoder (same
architecture as used in Fig.|l) and the image classifier model are trained. The image classifier model
comprises 2D convolutional, 2D max-pooling, and fully connected layers. It is a binary classification
model to predict a flame image as stable or unstable. The generated time series embeddings are
utilized for training this part of the framework. From an embedding, the image decoder learns to
reconstruct the corresponding flame image as closely as possible. With the reconstructed flame
image as input, the image classifier model predicts it as stable or unstable. Therefore, the overall test
framework for VSenseNet consists of three steps - time series encoder, image decoder, and image
classifier.

3 Experiments

Dataset: For dataset collection, we induce combustion instability in a laboratory-scale swirl com-
bustor. The fuel is injected co-axially with air at selected upstream distances. The chosen upstream
distances are 90 mm and 120 mm. For the upstream distance of 90 mm, partial premixing of the
fuel with air occurs, while the distance of 120 mm facilitates full premixing of the fuel and air. The
ground truth labels (stable, unstable) for the hi-speed flame image sequences are provided by the
domain experts. We identify the conditions by upstream distance (premixing length), airflow rate
(AFR), and fuel flow rate (FFR). Both AFR and FFR are expressed in Ipm (liters per minute). The
hi-speed images are captured at 3000 Hz (with a resolution of 1024 x 1024) for 3 seconds at each
condition. Simultaneously, the pressure data is recorded at 4 locations of the experimental setup with
a frequency of 9000 Hz. Therefore, for each condition, we have 9000 frames and 27000 time steps
of multivariate pressure data. From a total of six conditions, we use four conditions for training our
proposed models and keep two conditions for testing the performance of the models.

The stable and unstable conditions in the training set are:

1. Stable;20/60/600: Condition has Premixing Length = 120 mm, FFR = 60 and AFR = 600.

2. Stablegg/45,/450: Condition has Premixing Length = 90 mm, FFR = 45 and AFR = 450.

3. Unstable;30,/45/900: Condition has Premixing Length = 120 mm, FFR = 45 and AFR = 900.
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Figure 3: Reconstructions obtained from VSenseNet are compared against reconstructions obtained
from Cross-Modal baseline model, and actual flame images for Unstablegg 45,900 test condition.

4. Unstablegq,25/600: Condition has Premixing Length = 90 mm, FFR = 28 and AFR = 600.
The stable and unstable conditions in the test set are:

1. Stable;29,45/450: Condition has Premixing Length = 120 mm, FFR =45 and AFR = 450.
2. Unstablegq/45/900: Condition has Premixing Length = 90 mm, FFR = 45 and AFR = 900.

Results: For comparison of results, we use three baseline models: Image Classifier (image-based),
Time Series Classifier (entirely time series based with no cross-modal reconstruction) and Cross-
Modal Model (inspired from the Speech2Face [19] model). We use two evaluation metrics for
classification performance: Accuracy and False Negative Rate (FNR). For reconstruction performance,
we use Mean Squared Error (MSE) and Structural Similarity Index Measure (SSIM) as the evaluation
metrics. MSE computed between the actual and reconstructed images may not always be highly
indicative of the structural similarity. SSIM [23| 24] addresses this issue by considering texture
and also including luminance masking and contrast masking terms. We use Adam optimizer with a
learning rate of 0.001 and a batch size of 32. The models are trained using NVIDIA Titan RTX GPU.

Table [T] presents the empirical results for the test set conditions. Using time series as the input
modality with virtual sensing approach, we can enhance the average classification accuracy from
98.50% (Time Series Classifier) to 99.01% and approach closer towards the 99.38% (Image Classifier)
accuracy achieved by the imaging modality-based model. In terms of reconstruction performance,
VSenseNet outperforms the Cross-Modal baseline model in terms of SSIM and MSE. For the test
set condition Unstablegg /45,900, the VSenseNet model can reconstruct the flame structures better
than the baseline Cross-Modal model as highlighted by red boxes in Fig.[3]

Model Reconstruction Performance Classification Performance
SSIM | Mean Squared Error Accuracy [ FNR
Image Classifier NA NA 0.9938 + 0.0064 | 0.0122 + 0.0129
Time Series Classifier NA NA 0.9850 = 0.0021 | 0.0300 £ 0.0044
Cross-Modal 0.6655 0.0072 0.9888 + 0.0005 | 0.0222 £ 0.0010
VSenseNet 0.6876 0.0070 0.9901 + 0.0003 | 0.0197 £ 0.0007

Table 1: Empirical Results for the test set. For classification performance, average and standard
deviation of the evaluation metrics (Accuracy, FNR) are reported after training each model five times.
For reconstruction performance, average values of SSIM and MSE are reported.



4 Conclusion

Our proposed VSenseNet approach demonstrates effectiveness in reconstructing the flame images. We
demonstrate that by cross-modal reconstruction of synthetic images, the classification performance
is better than that from time series alone. Therefore we are enhancing the accuracy of combustion
instability detection using time series data with our virtual sensing modeling approach. Domain
experts can also gain valuable insights during an offline analysis of the reconstructed flame images.
In the future, we plan to extend VSenseNet to capture transitions in a combustion system.
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