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Abstract

We design modular and rotationally equivariant DeepSets for predicting a contin-
uous background quantity from a set of known foreground particles. Using this
architecture, we address a crucial problem in Cosmology: modelling the continu-
ous electron pressure field inside massive structures known as “clusters.” Given
a simulation of pressureless, dark matter particles, our networks can directly and
accurately predict the background electron pressure field. The modular design of
our architecture makes it possible to physically interpret the individual components.
Our most powerful deterministic model improves by 70% on the benchmark. A
conditional-VAE extension yields further improvement by 7%, being limited by
our small training set however. We envision use cases beyond theoretical cosmol-
ogy, for example in soft condensed matter physics, or meteorology and climate
science.2

1 Introduction

A pressing problem in cosmology is the accurate modeling of observables sourced or influenced
by physics beyond gravity, in short baryonic effects. Hydrodynamic simulations are the canonical
forward model for such fields; however, their computational cost is too high for them to be a viable
contender in generating the vast number of realizations necessary to sample distributions. Thus,
an approach that has recently emerged is the use of neural networks to map cheaper gravity-only
simulations to their full-physics counterparts. Not only does this idea enable a substantial speed-up in
generating realizations, but it could also improve our physical understanding; to this aim interpretable
models are required.

The problem that we tackle in this work is the prediction of the electron pressure Pe(~x) given a
gravity-only simulation. Since this is a translationally equivariant spatial problem, the seemingly
natural approach chosen for similar problems, e.g. by Refs. [1–6], is a convolutional neural net
(CNN), taking as input the density field of a gravity-only simulation. However, in this work we
argue that existing domain knowledge on Pe(~x) and similar fields renders the CNN approach inferior
to a set-based architecture. In fact, electron pressure values high enough to affect observables are
∗lthiele@princeton.edu
2We make our code publicly available at this URL. Data products, trained models, and hyperparameter SQL
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predominantly found in massive gravitationally collapsed structures, called clusters. A neural network
should naturally take this property into account. From this point of view, translational invariance is in
fact broken, negating the main advantage of CNNs.

To a first approximation, clusters are described by their mass M200 and radius R200. These
quantities determine a characteristic pressure scale P200 ∝ M200/R200. The electron pressure3

Pe(~r) is to leading order a spherically symmetric function, commonly approximated as a general-
ized Navarro-Frenk-White (GNFW) profile [7–9],

Pe(~r) ≈ GNFW(|~r|;M200, R200) , (1)

which we will use as the benchmark (with the parameterization as chosen in Ref. [9], fitted to our
data). There is an inherent random element in the electron pressure field if viewed as a function of a
gravity-only simulation’s snapshot at a given time. The reason is that chaos washes out some of the
history; in particular the time-integrated activity of the black holes at the cluster centers is difficult to
infer.

We propose to learn a probabilistic mapping directly from the simulation representation, i.e. from a
set of dark matter particles with associated positions ~qi and velocities ~vi. For a cluster α our most
general model can be written as

P̂e(~r) = F ({(~q(α)
i , ~v

(α)
i )}i∈α; {(~q(~r)

i , ~v
(~r)
i )}|~qi−~r|<R; sα, eα;a;~r) , (2)

where sα are scalar properties describing the cluster, eα are normed vector properties, a ∼ N (0, I)
is drawn from a standard normal, and we distinguish between feature tuples and SO(3) vectors using
the given notation. The first argument to F is the set of dark matter particles comprising the cluster,
positions and velocities are evaluated relative to the cluster position and bulk motion respectively.
Conversely, the second argument is the set of particles in the vicinity of the target position ~r, where the
positions are relative to ~r and the velocities relative to the local bulk motion; R is a hyperparameter.

DeepSets [10] are a class of architectures that naturally operate on such sets. Given a tuple of scalars
fi associated with the ith dark matter particle, a DeepSet first computes another tuple gi using a
multi-layer perceptron (MLP). Then a pooling operation (in our case the mean) over the i-direction
produces a feature tuple that is invariant under the ordering of the input particles. We denote such an
architecture as a scalar DeepSet. We construct the input features fi so as to make its elements SO(3)
scalars [11]. This can be achieved by using properties such as |~qi|, |~vi|, and contractions between
~qi, ~vi and the elements of eα. A simple extension multiplies the gi with the ~qi before pooling, thus
leading to an output feature tuple in which each element is an SO(3) vector. We denote such an
architecture as a vector DeepSet. It is easy to see that the described vector DeepSet is rotationally
equivariant, since its output is a linear combination of SO(3) vectors with SO(3) scalar coefficients.
Thus we obtain a rotationally equivariant class of architectures operating directly on the particle
representation instead of gridded fields.

2 Architecture

Fig. 1 schematically illustrates the various architecture components. We emphasize that most modules
can be trained and evaluated independently. This modular design makes the architecture amenable to
interpretation. At the end of Sec. 4 we will briefly mention several modules we have experimentally
added to the architecture. At various points the cluster-scale properties sα, eα are passed, which we
omit for conciseness.

The function f produces the final output P̂e(~r) using two components, namely a (modified) GNFW
prediction and the output of the ‘Aggregator’ MLP.

The GNFW model takes as input the target radial position |~r|, which is corrected for mis-centering
by the ‘Origin’ module (the cluster finder estimates cluster positions that are not necessarily best to
center the GNFW profile at).

The ‘Aggregator’ MLP combines multiple inputs. The ‘Local’ module produces scalar features
from the set of dark matter particles in the vicinity of the target position, where the cutoff R is a
hyperparameter. After passing the local particles through the DeepSet, we concatenate the resulting

3We use ~r for coordinates relative to a cluster’s position.
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Figure 1: Schematic illustration of the architecture used in this work. Modules can be independently
removed from and added to the architecture. See Sec. 2 for details.

tuple with the number of particles within R to set the scale. If other cluster-scale information, besides
the Local module, is passed to f , we also pass information on ~r to the Aggregator. It should be
noted that the use of the Local module is a form of expanding our training set (one could imagine
compressing the set of all particles comprising the cluster into some code which is then evaluated at
different positions; in this case, the training set would be very small however). The other input to
the Aggregator models the probabilistic nature of the mapping, through a conditional VAE [12–15]
architecture. The ‘Stochastic’ module is the standard VAE encoder, taking as input the residuals of
the electron pressure field with respect to a deterministic model. Since the simulation we are using
implements feedback by the central black holes in a spherically symmetric fashion, we average these
residuals in spherical shells around the cluster position (another instance of domain knowledge).

3 Data and training

We use the IllustrisTNG 300-1 simulation [16–21] for training and testing. This simulation provides a
gravity-only and a full-physics run with the same initial conditions. In this work, we restrict ourselves
to the present-day (redshift z = 0) snapshot; a generalization to earlier times is naturally possible.

We use the state-of-the-art code Rockstar [22, 23] to identify clusters with masses M200 > 5 ×
1013M�/h in the gravity-only snapshot.4 The resulting 463 clusters are randomly assigned to
training (70 %), validation (20 %), and testing (10 %) sets. They have radii R200 ranging from 600 to
1600 kpc/h and contain between 1.5 and 47 million dark matter particles within 2.5R200. The units
are customary in cosmology, with M� the sun’s mass, 1 kpc ∼ 3200 light-years, and h ∼ 0.7.

We produce electron pressure fields from the full-physics simulation using Voxelize [24], with a voxel
sidelength of 5R200/64. Our reconstruction loss Lrecon for a given cluster is the mean-squared error
on Pe(~r)/P200, where |~r| < 2R200 and the normalization with P200 mitigates our dearth of clusters
at the high-mass end.5 The target positions ~r are randomly sampled during training for efficiency,
while testing is of course performed on all available voxels.

For hyperparameter searches we use the Optuna package [25], solving the problem

θopt = argminLopt(θ) with Lopt(θ) ≡ median(Lrecon[networkθ]/Lrecon[GNFW benchmark]) , (3)

where the median is over the validation set at the end of training. During training runs on architectures
in which the stochastic module is included, we take as the training loss the sum of reconstruction loss
and negative KL divergence of the VAE code with respect to a standard normal, the latter multiplied
with a generally epoch-dependent hyperparameter. For such architectures, we perform multi-objective
optimization on both Lopt and the mean of the KL divergence over the validation set.6

4The reason for this choice of mass cutoff is that in the IllustrisTNG astrophysics model at lower masses the
gas physics changes qualitatively as AGN feedback is more effective in driving gas out of the cluster.

5For practical applications the scaling with P200 should be omitted, in which case a somewhat larger training
set will likely be required.

6Total compute cost is 13.4 (Tesla P100+9CPU) khr (1.09t CO2e [26]) with a PyTorch [27] implementation.
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Figure 2: Network losses evaluated on testing set and compared against the GNFW benchmark model.
Each data point is an individual cluster, the marker size indicating mass. The violins indicate the
distribution of losses when the VAE code is randomly sampled. The lines are simple smoothing
splines and only meant to guide the eye. The numbers in the legend’s first column are the performance
metric Lopt introduced in Eq. 3 (lower is better, benchmark ≡ 1).

4 Results and Discussion

In Fig. 2 we plot several network losses compared against the GNFW benchmark. Only correcting
for mis-centering (blue) already gives a factor ∼ 2 improvement over the use of cluster centers as
identified by Rockstar. Likewise, only using the dark matter matter particles in the vicinity of the
evaluation point7 (cyan) yields a further improvement. Combining the local information with the
shifted GNFW profiles (magenta) performs better than Local-only by a few percent, the improvement
being most pronounced in the high-loss regime. We conjecture that this could be because the
addition of the simpler GNFW model helps the network generalize in these relatively rare situations.
Expectedly, the model including the Stochastic module (green) generally obtains lower reconstruction
losses than the other models. The corresponding losses with random VAE samples are not much
worse in most cases, although a larger training set would certainly help the network learn a more
robust representation of the probabilistic component.

Naturally, we should ask whether our models are learning something trivial. We have checked that
a more general spherically symmetric model, implemented as an MLP that takes as input |~r| and
the cluster scalars sα, does not perform more than a few percent better than the GNFW benchmark.
Similarly, we find that a network using only the local density achieves more than twice the loss Lopt
compared to the Local network, demonstrating that the DeepSet is providing substantial information.

We have also experimented with adding further modules to the network. First, between Origin and
GNFW we have inserted an MLP that uses the cluster sα, eα to account for deviations from spherical
symmetry. We find no improvement from this modification. Second, we have constructed vector and
scalar DeepSets operating on the cluster set {(~q(α)

i , ~v
(α)
i )}i∈α whose outputs were then passed to

the Aggregator. Since these additional modules also do not yield any improvements, we conclude
that the relatively large local regions contain enough information to infer the global properties of the
cluster. It is important to appreciate that even these null results can tell us something physical, again
a consequence of the interpretable, modular design.

7We find that R ∼ 300 kpc/h is a good choice.
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5 Future directions

We have developed a general method to construct interpretable models that predict continuous fields
from a set of points while enforcing the underlying symmetries. The application to cosmological
structures demonstrates the power of our approach and opens up several directions of further in-
vestigation, e.g., symbolic regression of individual modules. Beyond cosmology, we see potential
use cases in irregular structures in condensed matter or in super-resolution atmosphere models from
scattered meteorological measurements.

Acknowledgements

LT thanks Kaze Wong for useful discussions. The authors acknowledge support by the Simons
Foundation. All computations have been performed on the Tiger high-performance computing cluster
at Princeton University.

References
[1] Tilman Tröster, Cameron Ferguson, Joachim Harnois-Déraps, and Ian G. McCarthy. Painting with baryons:

augmenting N-body simulations with gas using deep generative models. Mon. Not. R. Astron. Soc., 487(1):
L24–L29, July 2019. doi: 10.1093/mnrasl/slz075.

[2] Jacky H. T. Yip, Xinyue Zhang, Yanfang Wang, Wei Zhang, Yueqiu Sun, Gabriella Contardo, Fran-
cisco Villaescusa-Navarro, Siyu He, Shy Genel, and Shirley Ho. From Dark Matter to Galaxies with
Convolutional Neural Networks. arXiv e-prints, art. arXiv:1910.07813, October 2019.

[3] Xinyue Zhang, Yanfang Wang, Wei Zhang, Yueqiu Sun, Siyu He, Gabriella Contardo, Francisco Villaescusa-
Navarro, and Shirley Ho. From Dark Matter to Galaxies with Convolutional Networks. arXiv e-prints, art.
arXiv:1902.05965, February 2019.

[4] Noah Kasmanoff, Francisco Villaescusa-Navarro, Jeremy Tinker, and Shirley Ho. dm2gal: Mapping Dark
Matter to Galaxies with Neural Networks. arXiv e-prints, art. arXiv:2012.00186, November 2020.

[5] Leander Thiele, Francisco Villaescusa-Navarro, David N. Spergel, Dylan Nelson, and Annalisa Pillepich.
Teaching Neural Networks to Generate Fast Sunyaev-Zel’dovich Maps. Astrophys. J., 902(2):129, October
2020. doi: 10.3847/1538-4357/abb80f.

[6] Digvijay Wadekar, Francisco Villaescusa-Navarro, Shirley Ho, and Laurence Perreault-Levasseur. HInet:
Generating Neutral Hydrogen from Dark Matter with Neural Networks. Astrophys. J., 916(1):42, July
2021. doi: 10.3847/1538-4357/ac033a.

[7] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. A Universal Density Profile from Hierarchical
Clustering. Astrophys. J., 490:493–508, December 1997. doi: 10.1086/304888.

[8] Daisuke Nagai, Andrey V. Kravtsov, and Alexey Vikhlinin. Effects of Galaxy Formation on Thermody-
namics of the Intracluster Medium. Astrophys. J., 668(1):1–14, October 2007. doi: 10.1086/521328.

[9] Nicholas Battaglia, J. Richard Bond, Christoph Pfrommer, and J. L. Sievers. On the Cluster Physics of
Sunyaev-Zel’dovich and X-Ray Surveys. II. Deconstructing the Thermal SZ Power Spectrum. Astrophys. J.,
758(2):75, October 2012. doi: 10.1088/0004-637X/758/2/75.

[10] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep Sets. arXiv e-prints, art. arXiv:1703.06114, March 2017.

[11] Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Gauge-equivariant machine learning, structured like classical physics. arXiv e-prints, art.
arXiv:2106.06610, June 2021.

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. arXiv e-prints, art. arXiv:1603.08155, 2016.

[13] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A variational u-net for conditional appearance and
shape generation. arXiv e-prints, art. arXiv:1804.04694, 2018.

[14] François Lanusse, Rachel Mandelbaum, Siamak Ravanbakhsh, Chun-Liang Li, Peter Freeman, and
Barnabás Póczos. Deep generative models for galaxy image simulations. Mon. Not. R. Astron. Soc., 504
(4):5543–5555, July 2021. doi: 10.1093/mnras/stab1214.

5



[15] Benjamin Horowitz, Max Dornfest, Zarija Lukić, and Peter Harrington. HyPhy: Deep Generative
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