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Abstract

The morphologies of galaxies and their relation with physical features have been
extensively studied in the past. Galaxy morphology labels are usually created
by humans and are used to train machine learning models. Human labels have
been shown to contain biases in terms of observational parameters such as the
resolution of the labeled images. In this work, we demonstrate that deep learning
models trained on biased galaxy data produce biased predictions. We also propose
a method to train neural networks that takes into account this inherent labeling bias.
We show that our deep de-biasing method is able to reduce the bias of the models
even when trained using biased data.

1 Introduction

Astronomers have been studying galaxy properties and their evolution for over a century. Galaxy
morphologies have been used to understand physical processes involved in their evolution, such as
rotation velocity and gas content [8]. Large all-sky surveys such as the Sloan Digital Sky Survey
(SDSS) [24] have enabled these kind of studies by giving access to millions of astronomical sources.
In the future, we expect this number to grow to billions of galaxies when the Vera Rubin Observatory
starts to map the sky through time and space [12]. Manually classifying galaxy images according to
their morphology becomes an expensive task. Galaxy Zoo [16, 9] has been successful in creating
hundreds of thousands of non-expert human labels using a crowdsourcing strategy. Human labels
have been shown to be biased in terms of observable parameters: low resolution galaxies are
biased towards smoother types because the fine structure of these galaxies can not be distinguished
by human annotators [1, 3, 9, 4]. These labels have been used to train automatic classification
models, particularly deep learning architectures which have shown to outperform previous approaches
[6, 11, 7, 19, 22, 5].

Deep learning models have shown to learn human biases that are present in the training data [2, 17,
15, 18]. The question that naturally arises is: do deep learning models learn the human observational
biases when classifying galaxies according to their morphologies? And if so, is it possible to train
models that automatically remove those biases from the labels? In this work, we train a deep residual
network [10] with biased and de-biased labels from Galaxy Zoo 2, and show that the observational
bias present in human labeled galaxy morphologies datasets are learned by deep learning models that
use them as training sets. We also propose a learning strategy to train these models so that they take
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into account these biases, and show that we are able to diminish the bias of the models, even when
training with biased labels.

2 Methodology

2.1 Labeling bias and de-biasing

Consider a supervised learning task over a human labeled dataset D = {(xi, ỹi)}Ni=1 consisting
of pairs of features and biased labels (xi, ỹi). We assume that each of these pairs are sampled
independently from a data distribution pbias(x, ỹ) defined over X × Y . We will assume that for
each biased label ỹi there exists a latent ground truth label yi ∈ Y that we want to predict through
a function fw : X → Y with parameters w to be fitted. Consider a biasing parameter α (e.g. the
resolution of the labeled image). In this work we consider a maximum likelihood approach and leave
a Bayesian analysis for future work. Consider a classification problem where Y = 1, . . . ,K, the
likelihood of the data given the model parameters and the biasing parameter is

p(D|w, {αi}Ni=1) =

N∏
i=1

p(ỹi|xi,w, αi), (1)

=

N∏
i=1

∑
yi

p(ỹi, yi|xi,w, αi), (2)

=

N∏
i=1

∑
yi

p(ỹi|yi, αi)p(yi|xi,w), (3)

where the sum in Eq. 3 runs over the possible values of yi, and we assumed that the biased labels ỹi
only depends on the true labels yi and the biasing parameters of each object αi, while the true label is
inferred from the features xi and the parameters of the model w.

Notice that p(ỹ|y, α) models the biasing process by assuming the biased labels ỹ do not depend
directly on the features x. At the same time, p(y|x,w) models the dependance of y with x, making
ỹ and x conditionally independent given y. We model p(y|x,w) using a neural network with
parameters w. We train our model by minimizing the negative log-likelihood − log p(D|w, {αi}Ni=1)
(see Eq. 3).

2.2 Modeling galaxy morphology labeling bias

In this work, we consider a binary classification task where we classify galaxies between smooth or
disk according to the first level of the Galaxy Zoo 2 classification tree [23]. Labels were defined by
majority voting and galaxies that did not belong to smooth or disk classes were discarded. We use as
biasing parameter α the resolution of the galaxy image measured as the angular Petrosian radius of
the galaxy over the angular size of the point spread function (PSF).

We do not expect smooth galaxies to be confounded with disk galaxies, even for a poor resolution,
hence we defined the probability p(ỹ = disk|y = smooth, α) = 0. On the other hand, we do expect
low resolution disk galaxies to be confounded with smooth galaxies. This confusion will be more
important for lower resolution images than for better resolved images. We follow [3], and model the
biasing process as

p(ỹ = smooth|y = disk, α) = e−α
2/(2θ2), (4)

where θ is a hyperparameter. Notice that limα→0 p(ỹ = smooth|y = disk, α) = 1 (low resolu-
tion disk galaxies are always classified by humans as smooth) and limα→∞ p(ỹ = smooth|y =
disk, α) = 0 (high resolution disk galaxies are always clasified by humans as disks).

3 Results

In this work, we focus on Galaxy Zoo 2 (GZ2) data. We start by measuring the bias of the original
crowdsourced labels and the de-biased labels produced by [9] (GZ2B and GZ2D hereafter). We train
a ResNet50 model over these datasets and compare the bias on the predicted labels over the test set
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against the bias in the original labels of the same test set. We then use GZ2B to train a ResNet50
using our approach as described in Sec. 2. We also run the de-biasing procedure described in [3],
which is based on a logistic regression model that takes as input intrinsic parameters of the galaxies
(CV14 hereafter).

3.1 Data

All our experiments use GZ2 data [23]. We created hard labels by using majority voting and
discarded "star or artifacts" objects. Aiming at using a balanced dataset, we randomly sampled
121,984 galaxies from which 62,225 corresponded to "smooth", and 59,759 corresponded to "features
or disk" according to their original crowdsourced labels. In order to train the neural network models,
we divided the dataset into a training set of 97,600 galaxies, a validation set of 12,192 galaxies, and a
test set of 12,192 galaxies. We use the JPEG images labeled by the annotators as input to our models.
All galaxy parameters needed in our experiments were obtained from the SDSS database.

3.2 Deep learning architecture and training

We used a ResNet50 [10] as our deep learning model with an extra dense layer (1024 neurons
and ReLU activation) after the convolutional and pooling layers. We also trained Deep Galaxy V2
[13] and ResNet101 models, but report our results with ResNet50 given that it obtained the best
performance when training over GZ2B and GZ2D (minimizing the cross entropy i.e. no de-biasing).
We performed optimization by using ADAM [14] with β1 = 0.9 and β2 = 0.99. Table 1 shows the
accuracy, precision, recall, and f1-score for these experiments.

Table 1: Biases for different datasets and experiments. Classification metrics are included for
ResNet50 models trained directly over the GZ2B and GZ2D datasets.

Dataset / Method Bias CV14 Bias CV18 accuracy precision recall f1-score

a) GZ2B [23] 0.4831 0.3701 - - - -
b) GZ2D [9] 0.2679 0.3086 - - - -

c) ResNet50 over GZ2B 0.4893 0.3795 0.921 0.921 0.921 0.921
d) ResNet50 over GZ2D 0.2969 0.3246 0.896 0.866 0.879 0.872

e) CV14 [3] 0.3823 0.2990 - - - -
f) DDB (ours) 0.3382 0.2873 - - - -

3.3 Biases and de-biasing

In order to assess the level of bias in each set of labels, we use the bias quantities described in [3] and
[4] (CV14 and CV18, respectively). CV14 assumes that the fractions of objects of each class in an
unbiased dataset should not be significantly different for labels coming from images with different
resolutions. Hence, they calculate the deviation of the fraction of objects for bins in α as compared to
their intrinsic fraction. CV18 extends this idea by considering that the fractions of objects of each
class should not significantly change for labels with different resolutions within bins of intrinsic
parameters. By doing this, the intrinsic fractions of objects per class is assumed to vary in terms of
the intrinsic parameters. Notice that the biases calculated in CV14 are not comparable to the ones in
CV18, but they are useful when comparing the amount of bias in different labeled datasets by using
each of them separately and considering their different assumptions.

All debiasing methods were applied directly to GZ2B, and used as biasing parameter the galaxy
resolution as measured by α = (r/PSF), where r is the angular Petrosian radius of the galaxy and
PSF is the angular standard deviation of a Gaussian model PSF. For the sake of comparison, we start
by training a logistic regression model using the de-biasing procedure described in CV14 using the
Sérsic index, the ellipticity, and the half-light radius [21] as features for the classifier. This procedure
not only estimates the parameters of the logistic regression, but it also estimates de parameter θ of the
bias distribution of Eq. 4. This value for GZB2 was estimated as θ = 9.18.

As explained in Sec. 2 our proposed deep de-biasing method (DDB hereafter) consists of minimizing
the negative logarithm of the likelihood described in Eq. 3. We use a ResNet50 and Adam optimization
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Figure 1: Low and high resolution images of galaxies that changed their labels from "smooth" to
"disk" when using our method. The first rows show the images as labeled by the annotators of Galaxy
Zoo 2. The second row shows higher resolution images from the HST.

with β1 = 0.9 and β2 = 0.99. For the bias distribution we use the same distribution as in CV14 (Eq.
4) with a bias parameter of θ = 9.18.

Table 1 shows the results of our experiments. We start by noticing that, as expected, the labels in
GZ2D have a lower bias than the ones in GZ2B. The biases on the ResNet50 trained directly over
GZ2B (Tab. 1c) and GZ2D (Tab. 1d) show a similar behaviour indicating that when training the
ResNet50 model over biased data, the predicted labels will be as biased as the training set. In other
words, training on biased data produces biased models. On the other hand, both CV14, and DDB are
able to diminish the amount of bias of the original dataset GZ2B. Using DDB we are able to remove
even more bias than CV14. Furthermore, CV14 relies on the calculation of the Sérsic profiles [20],
while DDB is able to automatically learn features that help infer labels with less bias than the original
dataset.

In order to visually assess the performance of our approach, we searched the Mikulski Archive for
Space Telescopes1 (MAST) for high resolution Hubble Space Telescope (HST) images of galaxies in
the test set that changed their labels when using DDB. We found 10 HST images of galaxies that
changed from a "smooth" biased label to a "disk" de-biased label and none that changed from "disk"
to "smooth". Figure 1 shows the SDSS and HST images of such galaxies. Figures 1a, 1b, 1e, 1h,
and 1j show evidence of spiral arms. Figure 1f shows irregular features. Figures 1c, 1d, 1g, 1i show
lenticular features, although it is not completely clear that these are effectively disk galaxies. A further
astrophysical analysis is required to corroborate their type, e.g. by using colors and magnitudes.
These results show that our debiasing neural network is able to correctly label images even when the
labels used for training are biased.

1https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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4 Conclusions

We have studied the effect of training deep learning models for predicting galaxy morphologies using
data that is biased in terms of observable parameters such as the resolution of the images. We have
shown that when directly training these models using the biased data, training converges to a biased
model. We proposed a method for training deep learning models using biased data. We showed that
our method is able to converge to a model that diminishes the bias of the predicted labels.

Broader Impact

This work proposes a deep learning approach for estimating the ground truth labels of morphologically
classified galaxies using a biased labeled dataset. We believe that having a better estimate of these
labels will help astronomers to have a more detailed understanding of the formation and evolution of
galaxies. Although this paper is focused on biases related to the observational process of astronomical
image labeling, our approach may be applied to other kind of biases by modeling the distribution of
biased labels p(ỹ|y, α) according to the specific problem to be addressed. In practice, α may be any
biasing parameter present in real world datasets. One of the drawbacks of our approach is that the
biased label does not depend directly on the features used to infer the unbiased labels, which needs to
be addressed in future work.
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