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Abstract

To characterize a physical system to behave as desired, either its underlying govern-
ing rules must be known a priori or the system itself be accurately measured. The
complexity of full measurements of the system scales with its size. When exposed
to real-world conditions, such as perturbations or time-varying settings, the system
calibrated for a fixed working condition might require non-trivial re-calibration,
a process that could be prohibitively expensive, inefficient and impractical for
real-world use cases. In this work, we propose a learning procedure to obtain a
desired target output from a physical system. We use Variational Auto-Encoders
(VAE) to provide a generative model of the system function and use this model
to obtain the required input of the system that produces the target output. We
showcase the applicability of our method for two datasets in optical physics and
neuroscience.

1 Introduction

In physical system characterization, a fundamental challenge is finding the proper continuous space
input to a system that yields a desired functional output. For example, an open question in sen-
sory/motor neuroscience is how to determine the input stimulation able to induce a desired behavior.
So is controlling the output of an optical system, such as a turbid medium used for imaging, that could
be non-linear and time-varying. In a linear physical system, the problem of finding the input that
produces a desired output can be determined by monitoring its response to a series of arbitrary inputs
and then computing the inverse of the system’s transmission matrix (a mapping from inputs to out-
puts). This entails measuring the responses of the system fully. In practice, physical systems can only
be partially measured and, more importantly, are nonlinear. So the transmission matrix formalism
cannot be used. Even though the forward path of the system could be fully characterized, obtaining
its inverse for large scale systems involving millions of variables is computationally intensive if not
entirely intractable. Hence, resorting to data-driven methods that do not require full-measurements or
linear approximation of the system, such as deep learning approaches, is inevitable. Deep learning
techniques proposed for these tasks McIntosh et al. [2016], Rahmani et al. [2018] mostly take advan-
tage of labeled data to do supervised training. For applications that require control over the response
of one or an ensemble of targets, end-to-end supervised learning can fail due to the lack of labeled
data within the distribution of desired target responses as well as inherent sensitivity of supervised
approaches to perturbations of out-of-training-distribution data. Therefore, we instead propose a
learning framework based on generative probabilistic models Mirza and Osindero [2014] and in
specific, VAEs Kingma and Welling [2013] which involves in construction of a forward estimator
of the possibly partially measured system. Once the forward model is obtained, a second estimator
is trained to provide the required input of the system for producing the desired output. This latter
estimator could be constraint so as to promote certain solutions. Therefore, contributions of this work
are as follows:
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• Using the variational generative models, we provide a training algorithm for learning the
distribution of the system’s inputs that are needed to obtain a desired output of the system.

• Using the sampling feature of the learned forward VAE model, we illustrate how our training
algorithm learns to iteratively move towards the correct distribution of the inputs.

Related works: As opposed to the inference problem of estimating the input of the system from
noisy sensory outputs in experimental disciplines such as microscopy Rivenson et al. [2017], optical
tomography Würfl et al. [2016] and neuroscience Parthasarathy et al. [2017] that supervised deep
learning approach is a fairly well-established technique, learning methods for control applications
in these fields have yet to be matured. Closed-loop techniques based on deep networks have been
proposed for a number of applications, such as for brain neuroscience Bashivan et al. [2019] wherein
authors control the activity of individual neuronal sites in V4 area by optimizing single input stimuli.
Likewise, for optical turbid-medium imaging, authors have used ML-based estimators for controlling
the optical fields Rahmani et al. [2020]. As opposed to the previous works, we propose joint learning
of the forward and backward models of the system with VAEs to implicitly impose compatibility of
the sought-after solutions with the underlying physics of the problem. The latter, in essence, is akin
to technique of untrained neural networks Van Veen et al. [2018], Ulyanov et al. [2018], Heckel and
Hand [2018] in denoising and inpainting.

2 Generative modelling

Problem scenario In the most general form, we assume that a given input of a system, xi, is
mapped to its output via the function f as in yi = f(xi). Therein, xi ∈ Cn and yi ∈ Cm in the most
general case. All known about f is that it could be a (non)linear time-varying function. We assume
that all the noise sources are incorporated in f . Additionally, f can be sampled as many times as
needed. In other words, exact output of the system, i.e. yi, is available for any given input xi. Yet, f
is never measured nor analytically derived. Moreover, f might only be partially measured for which,
the input-output relationship is modified to yi = φ[f(xi)] where φ is either identity (fully measured
system) or some other functions (for example modulus |.|2 function).

We seek to find the x∗
i that would produce a desired y∗i . It is worth emphasizing that the experimental-

ist might only have access to the partially measured system while the objective is to obtain the desired
output in the fully measured system. The problem, in its most general form, can be formulated as
follows.

L = min
ξ,ζ

Exi,yi,z

[
D[yi,Mζ(xi, z)]

]
+ Ex∗

i ,y
∗
i ,z

[
σ[Mζ(Aξ(x

∗
i , y

∗
i ), z), y

∗
i ]
]

(1)

where Mζ : Cn×l → Cm, referred to henceforth as the Model, is a differentiable representation of
f parameterized by ζ and Aξ : Cn×m → Cn, referred to henceforth as Actor, is a mapping that
produces the input for Mζ . Therein, D is the distance between outputs yi sampled (experimentally)
from yi = f(xi) and the output of Mζ . σ is the distance between the desired target y∗i and predicted
output of Mζ given the output of Aξ. z = {zi}li=1 is the latent space vector of size l. The two-term
loss function L is then optimized with respect to the parameters ζ and ξ. We denote the first RHS
term in Eq. 1, as the Model’s loss LMζ

and the second RHS term as the Actor’s loss LAξ
.

Forward estimator learning The forward mapping Mζ is estimated as a generative probabilistic
VAE. The reason for this choice of model is two-fold. First, forward models that are fundamentally
stochastic in nature (see example 2 in Results section) could be better represented by a probabilistic
model rather than a ML estimator trained in a supervised learning manner. Additionally, even if f is
deterministic, noise sources incorporated into f make it stochastic in practice. Second, the generative
sampling feature of VAEs could be conveniently used to demonstrate how the correct control input
x∗
i (that is required to generate y∗i ) could be obtained iteratively.

The VAE Mζ consists of two networks, an encoder and a decoder. The former is trained to transform
input xi conditioned on the system’s output yi onto the latent vector z that is enforced to be close
to a normal distribution N (0, I); effectively learning the conditional distribution qΦ(z|yi) param-
eterized by Φ. The decoder, on the other hand, takes the latent vector z- drawn from the encoder
distribution N (µenc, σenc) using reparameterization trick- to generate output ŷi; effectively learning
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the conditional distribution pθ(yi|z, xi) parameterized by θ. The training of the VAE is carried out
by optimizing the following loss function w.r.t. ζ : {θ,Φ} Higgins et al. [2016].

LMζ
= min

ζ:{θ,Φ}
−Exi∼ρ(x)

[
Ez∼q(.|yi) [log[pθ(yi|z, xi)]]−β Eyi∼ρ(.|xi) [DKL(qΦ(z|yi) || N (0, I))]

]
(2)

where β is the weighting factor between the two terms in the loss function and ρ is to denote a general
purpose probability distribution.

Training algorithm A sketch of the networks and gradient flows is depicted below. Algorithm
1 presents the learning procedure for the system control. It involves in computing the variational
updates of the forward model followed by training of the backward model. In particular, first the
forward model Mζ is learned through optimizing LMζ

in the general loss function in Eq. 1 for some
number of steps K1 (note the gradient flow in the sketch). Once done, the backward model Aξ is
learned via optimizing the loss function LAξ

for K2 number of steps (gradients flow through the
fixed Model to reach the Actor).

After K1 +K2 steps, we asses the performance by sampling some targets (x∗
i , y∗i ) and using the

learned Actor Aξ(x
∗
i , y

∗
i ) to obtain system inputs x̂i. Finally, we compute an empirical performance

metric between the outputs generated through the experimental system ŷi by the control inputs
provided by the algorithm and the targets and reiterate the entire process if the performance is not
satisfactory.

Algorithm 1
Input: Data tuples (xi, yi) sampled randomly from partially measured system

yi = φ[f(xi)], target outputs y∗
i , K1 and K2 (number of training steps for Mζ and

Aξ, respectively), I (number of going back and forth between training the entire
networks and experimenting the obtained solution in the true system)

Output: The control input x∗
i required for generating y∗

i

1: Initialization Variational parameters ζ : {θ,Φ} and ξ
2: for iter ∈ {1, 2, 3, ...I} do

3: for i∈ {1, 2, 3, ...K1} do
4: ζ ← ζ − α∇ζLMζ (xi, yi, z)
5: end for
6: for i∈ {1, 2, 3, ...K2} do
7: ξ ← ξ − α∇ξLAξ (x

∗
i , y

∗
i )

8: end for
9: Sample new (xi, yi) from xi ← x̂i = Aξ(x

∗
i , y

∗
i ), and yi ← ŷi = f(Aξ(x

∗
i , y

∗
i ))

10: Calculate empirical performance metric 1
N

∑N
i=1 σ(ŷi, y

∗
i )

11: if System’s desired performance is achieved then
12: End training
13: end if
14:
15: end for

enc

dec

����������

Actor

�
���������

M
odel

3 Results

Phase retrieval for optical system control The first example involves in characterization of a
slowly time-varying, nonlinear physical system featuring random scramblers. The objective of this
experiment is to find the appropriate complex input vector of the system, X∗ = {x∗

i } ∈ Cn, that
produces a target output, Y∗ = {y∗µ} ∈ Rm (sampled from a desired distribution ρ) given the partial

measurements of the system as in y∗µ =
∣∣∣∑i Fµix

∗
i

∣∣∣2, where x∗
i (and respectively y∗µ) are elements of

the input (output) vector and Fµi is the complex-value measurement matrix. Although the problem
in essence is a phase retrieval (PR) of the system’s input, key differences with the conventional PR
settings renders it more challenging. In particular, in the the original PR problem, F is entirely known

3



a priori. In the current setting, F is not measured and therefore is unknown. Instead, tuples of an
arbitrary input X and its corresponding output Y is available. Secondly, while in the conventional PR,
outputs Y (generated via a teacher model) always belong to the support of F , the target output Y∗

may not belong to the support of F which requires finding the input that produces the closest output
to the target in some metric. The optimization problem and network architecture is explained in detail
in the Appendix A.

We tested our algorithm with target outputs Y∗ sampled from MNIST dataset Cohen et al. [2017]. Fig.
1 (a) plots the empirical l2 norm as well as 2D Pearson correlation between the system’s outputs and
targets versus the iteration number I in Algorithm 1. It can be seen that the algorithm almost reaches
the 2D correlation (∼ 0.9) obtained with the gold-standard full-measurement techniques such as
Loterie et al. [2015]. We note that this is the upper bound of the problem because the experimentalist
has access to full information phase and amplitude of the system’s output (the same problem but
without the modulus |.|2). Examples of the experimentally generated outputs using the proposed
algorithm are also provided in Appendix A.
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Figure 1: Performance metric of the algorithm (loss: left axis and Pearson correlation: right axis)
versus iteration number for phase retrieval (a) and vision neuroscience task (b). The Latent vector
evolution of the latter task as 2D embedding (blue). Orange dots denote the latent vector of the true
system f .

Vision neuroscience In the second example, we apply the algorithm to a dataset comprising
sequences of natural images x∗

ij ∈ Rn×t and their corresponding count data y∗ij ∈ Nm×t. These
images and the count data are, respectively, the stimuli entering the retina in Salamander and the
elicited time-series count responses of a number of Retina Ganglion Cells (RGCs). Approximating
the system as a Poisson process, the system f is defined as the function that takes the image sequences
as input and gives a time-varying posterior mean as output. Models based on Convolutional Neural
Networks (CNNs) have been recently proposed for this modeling McIntosh et al. [2016]. Given f ,
we intend to find a transformed version of the input images that while are constraint to be of lower
resolution, still elicit similar neuronal responses (in some metric) to those of the original input images
(refer to appendix B). This constraint is imposed implicitly by architecture of the Actor network
explained in more details in the appendix C.

Fig. 1 plots the performance metric evolution of this task. It can be seen that the algorithm almost
reaches the maximum possible performance of the system (1D correlation ∼ 0.3) within three
iterations. The latent vector of the forward VAE Model of our algorithm is sampled at each iteration
and projected to a 2-dimensional (2D) embedding using t-SNE. The true latent vector distribution
required for obtaining the desired outputs is also shown. The network architecture and optimization
scheme is further explained in the Appendices.

4 Discussion and conclusion

We proposed a framework based on VAEs for system control. We also demonstrated how VAEs
could illustratively show iterative convergence of the posterior latent variables to those required for
obtaining the target outputs. The relevance of the approach was showcased for two applications. The
applicability of the method to problems that are chaotic or rapidly time-varying is interesting and
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perhaps more challenging due to their difficulty of latent space learning. We note that black-box
treatment of the physical system by the algorithm should be treated with caution and further studied
in future work.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and
scope? Response: Yes, please refer to Results section.

(b) Have you read the ethics review guidelines and ensured that your paper conforms to them? Re-
sponse: Yes.

(c) Did you discuss any potential negative societal impacts of your work? Response: Yes, please re-
fer to the discussion and conclusion section.

(d) Did you describe the limitations of your work? Response: Yes, please refer to the discussion and
conclusion section.

2. If you are including theoretical results... (a) Did you state the full set of assumptions of all theo-
retical results? Response: n/a

(b) Did you include complete proofs of all theoretical results? Response: n/a

3. If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce
the main experimental results (either in the supplemental material or as a URL)? Response: Yes, please refer to
the supplementary section.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
Response: Yes, please refer to the supplementary section.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments multi-
ple times)? Response: Yes, please refer to Fig. 1.

(d) Did you include the amount of compute and the type of resources used (e.g., type of GPUs, inter-
nal cluster, or cloud provider)? Response: Yes, please refer to the supplementary section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets... (a) If
your work uses existing assets, did you cite the creators? Response: Yes, please refer to the results section.

(b) Did you mention the license of the assets? Response: No. License is not required for usage or is
data is publicly available.

(c) Did you include any new assets either in the supplemental material or as a URL? Response: Yes,
assets are provided in the submission material and will be made public ally available upon publication.

(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating?
Response: n/a

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? Response: n/a

5. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the
full text of instructions given to participants and screenshots, if applicable? Response: n/a

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? Response: n/a

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? Response: n/a
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Appendices
A Phase retrieval for optical system control problem setting

Physical system The system in the optical control task is the experimental setup that consists of an input
modulator (spatial light modulator), turbid medium (a 50 µm core size step-index multimode fiber of length 75
cm) and a receiver (a CMOS camera) working at light wavelength 532 nm. An example of a random input and
its corresponding system’s output is depicted in Fig. 2.

Figure 2: An example of a random input to the system and its corresponding output.

Optimization setting The task of phase retrieval for optical system control is schematically depicted in 3.
The optimization problem can then be written as:

L = min
ξ,ζ

EX,Y,z

∥∥∥Y−Mζ(X, z)
∥∥∥2

l2

+ EX∗,Y∗,z

[
∥Y∗ −Mζ(Aξ(Y∗), z)∥2l2

]
(3)

where we choose l2 norm for the forward and backward metrics.

Figure 3: Input control pattern inference in the phase retrieval for optical system control task.

System’s output Some examples of system’s output obtained with the input found with the proposed
algorithm is depicted in Fig. 4.

B Vision neuroscience problem setting

Physical system Instead of the experimental system, we use a CNN-based network trained with the entire
dataset of the input image stimuli and their corresponding neuronal responses as the proxy for the true system
f . Therefore, to be fair, only a third of the same dataset, randomly selected, is made available to our training
algorithm. The architecture of f is identical to that of the forward model. An example of the input-output of this
system is depicted in Fig. 5.

Optimization setting The dimensionality reduction process is schematically depicted in Fig. 6. The
backward model in the task, which has a U-net architecture Ronneberger et al. [2019], is constraint to find
solutions that are of lower resolutions than the original high resolution stimuli. This is achieved by adjusting the
bottleneck size in the network architecture (denoted in Table 3). Lower sizes for the bottleneck provide lower
resolution solutions. The loss function for this optimization problem reads as follows:
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Figure 4: Examples of the experimental system’s outputs obtained with the input solutions found by
the algorithm.

Figure 5: An example of the input image sequence and its corresponding output spike train of the
vision system.

L = min
ξ,ζ

Ex∗
ij ,y

∗
ij ,z

[
log Po(y∗

ij |Mζ(x
∗
ij , z))

]
+ Ex∗

ij ,y
∗
ij ,z

[
σ[Mζ(Aξ(x

∗
ij), z), y

∗
ij ]

]
(4)

where we choose Poisson loss both for the forward and backward mappings.

C Network architecture and optimization

The hyperparameters of the forward and backward networks, optimizers as well as training epochs used for
training is summarized in Table 1. Architecture of the networks is presented in Table 2 and 3. Hyperparameters
were chosen such that a balance between the two terms of losses in Eq. 1 is achieved.

D Code repository

All models, implemented in Tensorflow v. 2.1. on Nvidia GPU
2080 Ti, are available on Github: https://github.com/Babak70/
Variational-framework-for-partially-measured-physical-system-control.
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Figure 6: Dimensionality reduction of the input stimuli in the vision neuroscience task.

Task 1 Task 2

Optimizer Adam Adam
Learning rate 10−4 10−4

VAE’s β 500/450 10
Latent space dim. 100 15
Train/val/test batch size 20/- /103 103/103/103
Train/val/test batch num. 103/- /1 287/72/5

Table 1: Training details

Actor Encoder Decoder

Input 100× 100 imgs Input 51× 51 imgs Input latent dim. vector
F.C. output 51× 51 Sigmoid F.C. output 2× latent dim. no activ. F.C. output 51× 51 Sigmoid

F.C. output 100× 100 Sigmoid
Table 2: Task 1 network architecture

Actor Encoder Decoder

Input 50× 50× 1000 seq. of imgs Input 50× 50× 1000 seq. of imgs F.C. output 16× 12× 12 Relu
3× 3 conv. 64 s. 1 same Relu 3× 3 conv. 64 s. 1 same Relu 3× 3 conv. 32 s. 1 same Relu

2× 2 maxpool 2× 2 maxpool 2× 2 Upsampling
3× 3 conv. 32 s. 1 same Relu 3× 3 conv. 32 s. 1 same Relu 4 sided zero pad.

2× 2 maxpool 2× 2 maxpool 3× 3 conv. 64 s. 1 same Relu
3× 3 conv. 16 s. 1 same Relu 3× 3 conv. 16 s. 1 same Relu 2× 2 Upsampling

F.C. output Bottleneck(1/4/9) No activ. F.C. output 2× Latent dim. No activ. 3× 3 conv. 1 s. 1 same Sigmoid
F.C. output 16× 12× 12 21× 21 conv. 4 s. 1 no pad. no activ.

3× 3 conv. 32 s. 1 same Relu 40× 1 1D-conv. 4 s. 1 same Relu
2× 2 Upsampling 15× 15 conv. 4 s. 1 no pad. Relu
4 sided zero pad. F.C. output 9 Exponential activ.

3× 3 conv. 64 s. 1 same Relu
2× 2 Upsampling

3× 3 conv. 1 s. 1 same Sigmoid
Table 3: Task 2 network architecture
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