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Abstract

Galaxy morphology is connected to various fundamental properties of a galaxy and
studying the morphology of large samples of galaxies is central to understanding the
relationship between morphology and the physics of galaxy formation & evolution.
For the first time, we are able to use machine learning to estimate Bayesian posteri-
ors for galaxy morphological parameters. To achieve this, GAMPEN, our machine
learning framework, uses a spatial transformer network (STN), a convolutional
neural network, and the Monte-Carlo Dropout technique. This novel application of
an STN in astronomy also enables GAMPEN to crop out most secondary galaxies
in the frame and focus on the galaxy of interest. We also demonstrate that by first
training on simulations and then performing transfer learning using real data, we
are able to achieve excellent estimates for morphological parameters of galaxies
in the Hyper Suprime-Cam Wide survey, while using only a small amount of real
training data.

1 Introduction

For almost a century, starting with Edwin Hubble’s work in 1926, astronomers have linked the
morphology (shape) of galaxies to the physics of galaxy formation and evolution. Morphology has
been shown to be related to various fundamental properties of the galaxy and its environment – galaxy
mass, star formation rate, stellar kinematics, merger history, cosmic environment, the influence of
supermassive black holes, and a range of other physics (Tremaine et al., 2002; Pozzetti et al., 2010;
Wuyts et al., 2011; Schawinski et al., 2014; Powell et al., 2017). Studying the morphology of large
samples of galaxies at different redshifts (i.e., distances) is crucial in order to understand the physics
of galaxy evolution.
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Driven by the fact that traditional techniques of determining galaxy morphology (visual inspection
and template fitting) are not scalable to the large data volumes expected from future surveys like the
Large Synoptic Survey Telescope (LSST), and the Nancy Grace Roman Space Telescope (NGRST),
Convolutional Neural Networks (CNNs) have become increasingly popular for determining galaxy
morphology (Ghosh et al., 2020; Hausen & Robertson, 2020; Cheng et al., 2021; Vega-Ferrero et al.,
2021). However, most previous works have provided only broad morphological classifications, and
they require very large training sets of pre-classified galaxies. A few works like Tuccillo et al. (2018)
have produced quantitative point-estimates of single morphological parameters, but without associated
uncertainties. Computation of Bayesian posteriors is crucial for drawing statistical inferences that
account for uncertainty, and thus has been indispensable in deriving robust scaling relations, as well
as tests of theoretical models using morphology (Bernardi et al., 2013; van der Wel et al., 2014;
Schawinski et al., 2014). Additionally, if CNNs are to replace traditional methods for estimating
galaxy morphological parameters in upcoming imaging surveys, there needs to be a framework that
does not require a large pre-classified training set from the same survey.

In this work, we present the Galaxy Morphology Posterior Estimation Network (GAMPEN), a
machine learning framework that combines a Spatial Transformer Network (STN), a CNN, and the
Monte Carlo Dropout (MCD) technique to estimate the posteriors of three different morphological
parameters: the bulge-to-total light ratio (LB/LT ), the half-light radius (Re), and the total flux. In
order to avoid using a large training set of pre-classified real galaxies, we first trained GAMPEN
on realistic simulations of galaxies, and then performed transfer learning on a small amount of
real data. Using this technique, we demonstrate below that we are able to obtain robust estimates
for the posterior distributions of morphological parameters of z (redshift) < 0.25 galaxies in the
Hyper-Suprime Cam - Wide (HSC-W) survey (Aihara et al., 2018).

Figure 1: Schematic diagram of GAMPEN. The numbers below each layer refer to the number
of filters/neurons and the numbers inside the convolutional layers refer to the kernel sizes of the
convolutional layers. An example of the transformation performed by the STN on a Hyper Suprime-
Cam cutout is shown in the top inset.

2 Description of the Framework

The architecture of GAMPEN is shown in Fig.1 and consists of a CNN preceded by an STN. The
design of the CNN is based on the design of GAMORNET (Ghosh et al., 2020) and consists of 5
convolutional layers and three fully connected layers. Interspersed between these are max-pooling
and dropout layers. All weight layers use the ReLU activation function except the output layer, which
uses a linear activation function. The outputs of the three neurons correspond to the LB/LT , Re, and
total flux of the galaxy fed into the network.

As illustrated in Fig. 1, the STN included in GAMPEN correctly learns to crop out most secondary
objects and focus on the galaxy at the center of the cutout. This is an extremely important feature
when applying CNNs to unanalyzed surveys, as there is no robust technique to predict the correct
cutout size for galaxies in the absence of Re measurements. The STN learns to perform an affine
transformation which makes the downstream task of morphological parameter estimation easier
and it consists of i) a localization network, ii) a parameterized grid generator, and iii) a sampler.
The localization network (consisting of two convolutional layers, followed by a fully connected
regression layer) takes the input image and outputs θ, the six parameters of an affine transformation
Tθ; this gives a transformation conditional on the input image. The grid generator thereafter uses the
predicted transformation parameters to create a sampling grid (G). Finally, the sampler takes the set
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of sampling points Tθ(G), along with the input image, and produces the transformed input image,
which is then passed on to the CNN. Since the STN can be trained with standard back-propagation,
the entire GAMPEN framework can be trained end-to-end without any separate supervision required
for the STN. For a more extensive discussion about STNs, please refer to Jaderberg et al. (2015).

In order to predict Bayesian posteriors, we treat the trained model, w, as a random variable, because,
intuitively, there are many possible models that could be trained from the same training data, D. To
predict the posterior, we need to marginalize over these possible models; and for that marginalization,
we need to know how likely we were to train a particular model w given the data, p(w|D). In order
to estimate p(w|D), we use the Monte-Carlo Dropout (MCD) technique as introduced by Gal &
Ghahramani (2016). In practice, this amounts to training the network with dropout before every
weight layer and optimizing a cost function given by the log-likelihood with an L2 regularization
term. At test time, each realization of the network’s outputs — given by a forward pass with a random
dropout — is a sample from the approximate parameter posterior. We do 1000 forwarded passes for
every input galaxy to estimate the parameter posteriors.

Figure 2: (Left): A randomly chosen simulated galaxy (Right): The posterior distributions for the
galaxy as predicted by GAMPEN. The solid yellow line refers to the true value of each parameter.

3 Training & Preliminary Results

We first train GAMPEN on realistic simulations of galaxies and then fine-tune the already trained
network using a small amount of real data. We use GalSim (Rowe et al., 2015) to generate 150,000
realistic galaxies matching the properties of z < 0.25 galaxies in the HSC-W survey. In order to
have a diverse training set, 75% of the simulated galaxies consisted of a bulge + disk component; and
the remaining 25% had either a bulge or a disk component. The parameters required to generate the
galaxies are drawn from uniform distributions with ranges representative of typical galaxies at this
redshift (Binney & Merrifield, 1998). We convolved these simulated galaxies with a representative
point spread function (PSF) and added representative noise based on real HSC-W images. Using an
80-10-10 train-validation-test split, we trained GAMPEN on these simulated galaxies. The network
was trained using stochastic gradient descent and its hyperparameters were tuned using the loss of the
validation set. A randomly chosen simulated galaxy and its parameters as predicted by GAMPEN
after training is shown in Fig. 2

Thereafter, we fine-tuned the network trained on simulations using a small amount of real data. We
select z < 0.25 HSC-W g-band galaxies with secure redshifts and no imaging issues (such as cosmic
ray hits), and then cross-match these with the Simard et al. (2011) catalog, which had performed
bulge + disk decomposition using Sloan Digital Sky Survey imaging. We use the Simard et al. (2011)
fits to represent the correct parameters for this set of 20, 000 real galaxies, of which 30% are used to
fine-tune the network trained on simulations, and the rest for validation and testing.

We regard the dropout rate used in GAMPEN as a variational parameter of the model because while
using MCD, greater dropout rates lead to higher estimated uncertainties (on average). Thus, we train
GAMPEN with different dropout rates and then calculate their coverage probabilities, defined as
the fraction of the validation set galaxies where the true value lies within a particular confidence
interval of the predicted distribution. From our experiments, a dropout rate of 0.1 yields a coverage
probability roughly equal to the confidence level of the interval for which it was calculated. Thus, we
choose this model as it should generate accurate uncertainties.

Finally, we calculate the residuals for the galaxies in our testing set. We define the residual as the
difference between the most probable value of the predicted posterior distribution and the true value.
The histogram of residuals for all three output parameters is shown in Fig. 3. All the histograms
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Figure 3: Histograms of residuals for the three output variables for HSC-W g-band z < 0.25 galaxies.
The red line corresponds to x = 0 and the numbers in the top-left box refer to the mean (µ), the
median (med.), and the standard deviation (σ) of the residual distribution.

Figure 4: Two dimensional density plots for the prediction residuals against the true values of the
output variables for the HSC-W g-band z < 0.25 galaxies

are centered at ∼ 0 and have reasonable sigmas (σLB/LT
= 0.19; σRe = 0.38”; σFlux = 4.7× 104

nJy). Fig. 4 shows the residuals for each variable when plotted against the true values of the output
variables. With some exceptions, the residuals are largely uniformly distributed about the y = 0 line.

In the top-left plot, we can see that for very small values of LB/LT (i.e., a completely disk-dominated
galaxy), GAMPEN over-predicts the amount of light in the bulge; and for very high values of LB/LT
(i.e., a completely bulge dominated galaxy), GAMPEN under-predicts the light in the bulge. Therefore,
in these “edge" cases, when one component completely dominates over the other, GAMPEN under-
predicts the amount of light in the weaker component. In the top-center plot, we can see that there is
a slight decrease in LB/LT residuals for galaxies with Re > 2.5” — that is, the network measures
larger galaxies more accurately. Lastly, from the right column, it is clear that all three residuals
increase for fainter galaxies, which is not surprising as fainter galaxies are inherently more difficult
to analyze due to their low signal-to-noise ratios.

4 Conclusions & Broader Impact

In this work, we have demonstrated that we can use GAMPEN, our machine learning framework, to
predict accurate posterior distributions for morphological parameters of galaxies while using minimal
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real training data. We demonstrate GAMPEN’s capabilities by applying it on z < 0.25 HSC-Wide
galaxies and showing that it can accurately recover the LB/LT , Re, and total flux for these galaxies.
The galaxies with the largest residuals are smaller, fainter, and/or have one morphological component
completely dominating over the other — situations where morphological analysis is inherently
difficult. We have also outlined how the use of an STN allows GAMPEN to crop out secondary
galaxies present in the cutout and focus on galaxies at the center. This is the first time an STN
has been used in astronomical analysis, and GAMPEN is the first ML framework that can provide
Bayesian posteriors for morphological analysis of galaxies. After further testing, we aim to make
GAMPEN and its associated models public by mid-2022

We believe that our use of publicly available datasets and catalogs encourages the development of
community tools and facilitates more accessibility. Our general technique can also be easily applied
to problems in other fields. We recognize that deep learning models have sometimes propagated
existing biases in our society, or have been used in disastrous wars and mass surveillance. However,
because the information available in astrophysical images is very different from that of human-centric
“daily-life" imaging data, we believe that our work is much less prone to misuse or abuse.
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A Appendix

Further Training Information In order to increase reproducibility, we outline further information
about the training process of GAMPEN.

We used a learning rate of 5 × 10−6, and a batch size of 32. For the stochastic gradient descent
optimizer, we used a momentum of 0.99 enabled Nesterov momentum.

All the cutouts used in this work were square cutouts of 239 pixels on each side. An inverse hyperbolic
sine function (arcsinh) stretch was applied to both the simulated as well as the real galaxy images
before being fed into the network. All the target labels were also normalized using standard scaling.

We used two NVIDIA Tesla P100 GPUs at the Yale Center for Research Computing for training
GAMPEN. 40 epochs of training took ∼ 15 hours.

Data-Set Used We used the publicly available Hyper Suprime-Cam Data Release 2 which is avail-
able at https://hsc-release.mtk.nao.ac.jp/doc/index.php/sample-page/pdr2/. The
HSC collaboration didn’t attach a specific public-use license along with their dataset. However, the
data is available for use freely as long as the relevant data release publication is cited.
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