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Abstract

Low surface brightness galaxies (LSBGs), galaxies that are fainter than the dark
night sky, are famously difficult to detect. Nonetheless, studies of these galaxies are
essential to improve our understanding of the formation and evolution of low-mass
galaxies. In this work, we train a deep learning model using the Mask R-CNN
framework on a set of simulated LSBGs inserted into images from the Dark Energy
Survey (DES) Data Release 2 (DR2). This deep learning model is combined
with several conventional image pre-processing steps to develop a pipeline for the
detection of LSBGs. We apply this pipeline to the full DES DR2 coadd image
dataset, and preliminary results show the detection of 22 large, high-quality LSBG
candidates that went undetected by conventional algorithms. Furthermore, we find
that the performance of our algorithm is greatly improved by including examples
of false positives as an additional class during training.

1 Introduction

The limited sensitivity of astronomical observations leads to lower efficiency in detecting faint
astronomical systems (Disney, 1976; Bothun et al., 1997). In particular, low surface brightness
galaxies (LSBGs), galaxies with central brightness fainter than the night sky, have proven to be
very difficult to detect with conventional algorithms. These systems are extremes of the galactic
population, and thus provide a good test for the standard models of cosmology and galaxy formation.
To address these observational issues, it is essential to develop efficient and effective techniques for
identifying and cataloging very faint galaxies.
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Recently, a catalog of 23,790 LSBGs was identified in the first three years of data from the Dark
Energy Survey (DES; DES Collaboration, 2005; DES Collaboration et al., 2018) using results from
SourceExtractor (Bertin and Arnouts, 1996) and a conventional support vector machine classifier
(Tanoglidis et al., 2021b). This labelled dataset has subsequently been used to train a Convolutional
Neural Network (CNN) for separating LSBGs from artifacts (Tanoglidis et al., 2021a), showing the
promise of machine vision for studying the low-surface-brightness universe. The focus of this work
is to leverage the power of machine vision, specifically through the Mask R-CNN framework (He
et al., 2018), to train a model to detect large, faint LSBGs that are missed by conventional algorithms.

2 Mask R-CNN Model

In this work, we utilize the instance segmentation and object detection algorithm Mask R-CNN.
We describe this model briefly here, and refer the interested reader to the original paper for a more
technical discussion (He et al., 2018). A high-level depiction of the algorithm is shown in Fig. 1. The
input image is first fed into the “backbone" of the network, a pre-trained CNN, in this case ResNet,
whose output is a feature map. These feature maps are then fed into a Region Proposal Network
(RPN) whose output is a set of Regions of Interest (RoIs) where potential objects are located. These
regions are identified from a CNN trained to identify anchor boxes of various sizes at each position.
The regions with the highest probabilities of containing an object are then passed into the RoIAlign
method along with the feature maps from the backbone to produce RoI feature maps of the same size.
The final part of the algorithm is a simultaneous three-fold process: classification of the object in the
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Figure 1: Schematic description of the Mask R-CNN algorithm.

RoI with a softmax classifier, regression to learn the best bounding box coordinates, and per-pixel
classification with a Fully Convolutional Network (FCN) to create an object mask. The final output
of the algorithm is a bounding box region, a per-pixel mask, an object class, and a confidence score
for each detected object.

2.1 Image Processing and Training

Training the Mask R-CNN algorithm requires a set of images along with per-pixel labels of training
objects. To train a model for detecting LSBGs, we injected simulated galaxies into 94 random 10,000
pixel × 10,000 pixel DES images. A simulated dataset provides the distinct advantage of having
pre-labeled ground truth masks, bypassing the requirement of manually labelling a dataset. Artificial
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LSBGs are modeled with GalSim (Rowe et al., 2015), an open-source simulation toolkit. GalSim can
simulate galaxies from a variety of simple parametric models, and we used a Sersić profile for our
artificial LSBGs.

After injecting 16 LSBGs per tile, each tile was divided into sixteen 2,500 pixel × 2,500 pixel
quadrants with each containing one LSBG. In addition to the LSBG class, we also included a training
class for very large objects identified from the DES DR2 catalog (DES Collaboration and et al., 2021).
Objects in this class were identified as those whose masked area exceeded 10,000 pixels (∼ 0.2 deg2)
in angular size. The purpose of this was to remove contamination coming from the periphery of
bright sources by training the algorithm to specifically detect this class of object as distinct from
LSBGs. The next step is to pre-process images before training in order to accentuate low surface
brightness features. This occurs in three steps:

1. Replace pixels associated with all sources detected in the DES DR2 catalog with noise.

2. Convolve the image with a Gaussian kernel.

3. Bin the image by a factor of 10× 10.

The model was trained on 94 tiles with 1034 simulated LSBGs over 60 epochs. In total 1504 LSBGs
were injected with ∼ 70% of these assigned to a training set, ∼ 15% left for validation, and ∼ 15%
used for testing. Each epoch consisted of 150 steps, with 15 steps at the end of each for validation.

The final step was to test the model on the reserved test set of 282 simulated LSBGs. While examining
the quantitative results of this process is useful, we focused our efforts more on a qualitative analysis
of the model. After looking at the model’s output on the entire test set, we were confident in the
model’s performance and decided to apply the model to the full DES dataset. The detection pipeline
is shown schematically in Fig. 2.

a) b) c)
d)

Figure 2: Example of a successful LSBG detection using the pipeline described in Section 2.1. Panel a)
represents the full, unprocessed image along with a red grid outline indicating the cutouts. Panel b) shows a
zoomed version of the indicated cutout before processing. Panel c) represents the fully processed version of
panel b), showing the accentuation of the LSBG in the right of the image. The region identified by the Mask
R-CNN is outlined in red. Panel d) shows the bounded detection region zoomed in from the DESI Legacy
Imaging Surveys Sky Viewer.1

3 Results

In this section we summarize the results of running the detection pipeline on all 10,169 coadd image
tiles in DES DR2. The model returned 13,336 objects classified as LSBGs of which ∼ 11,000 have
been visually inspected. This visual inspection identified 22 high confidence LSBGs and 19 low
confidence LSBGs by comparing to images of known LSBGs in DES. Fig. 4 shows the zoomed in
bounding box of 4 out of the 22 high confidence LSBG candidates in the DESI Legacy Imaging
Surveys Sky Viewer (the same as panel (d) in Fig. 2). These galaxies are generally larger (with most
having angular sizes > 20 arcsec) and lower surface brightness than those detected in previous DES
LSBG catalogs (e.g., Tanoglidis et al., 2021b).

The vast majority of the model’s output labelled as LSBGs were artifacts. The most prominent
artifact class consisted of Galactic cirrus, starlight scattered off of interstellar dust in our Galaxy.
Contamination from Galactic cirrus is a well-known systematic when studying the low surface

1http://legacysurvey.org/
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Map of Galactic Cirrus

Figure 3: Left panel: Sky map of all Mask R-CNN model detections (black dots) along with our new high
confidence (red stars) and low confidence (blue points) LSBG detections. Right panel: Sky map of Galactic
cirrus, where brighter regions represent higher detection densities. In both panels, the blue outline indicates the
region of observed by DES.

brightness universe (e.g., when studying faint tidal features around distant galaxies; Cortese et al.,
2010). The model also detected a number of tidal features associated with galaxies and galaxy
mergers. After visually inspecting the images, we conclude that this is likely because these features
are not completely characterized by SourceExtractor in the DES pipeline, and thus when the
compact regions of the sources are removed, the tidal features in the periphery remain and are
amplified by our pre-processing. We hoped to prevent this from occurring with the binary dilation
step in the image pre-processing, which was implemented to cover as much of the compact sources
in the mask as possible. However, we were not able to completely remove all features from these
compact sources, hence their prominence in the model’s output. The same is true for bright stars
and large galaxies. Our initial models classified a high volume of these artifacts as LSBGs; however,
adding instances of these false positives to the training set greatly improved the purity of the results.

Figure 4: Four high confidence LSBG candidates from detection ran on 10,169 tiles of DES DR2
using the Mask R-CNN Model.

In Fig. 3, we plot the spatial distribution of all our detections (with the high and low confidence
LSBGs highlighted) as compared to a map of the Galactic cirrus in the DES footprint.2 As mentioned
previously, our visual inspection showed a high incidence of Galactic cirrus in the pipeline output.
We therefore decided to compare our results to a map of the Galactic cirrus, which showed a very
high visual correlation in most areas, confirming the model’s apparent propensity for detecting
cirrus. It is interesting to note that some regions appear to visually lack a correlation to the map.
Specifically, the left and lower right of the DES footprint appear underdense in our detection results
while the map of Galactic cirrus suggests high densities in these regions. This is likely a result of
the fact that these regions are closer to the Galactic plane and thus the model’s detections are most
likely dominated by artifacts of very bright, nearby stars. Another intriguing feature of Fig. 3 is the
cluster of high confidence LSBG detections in the region around (RA, DEC) = (55◦,−35◦). This is

2Cirrus map courtesy of the DES Collaboration (private communication).
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approximately the location of the nearby Fornax galaxy cluster. Tanoglidis et al. (2021b) showed
prominent clustering of red LSBGs around the Fornax cluster, a fact that our model verifies.

4 Conclusions

In this work we applied the deep learning framework Mask R-CNN to the problem of detecting large
low surface brightness galaxies in the Dark Energy Survey Data Release 2 using a simulated, labelled
dataset of LSBGs generated with GalSim with a range of physical parameters. We trained on 94 tiles
with 16 LSBGs simulated per tile. We then developed a detection pipeline which we tested on ∼ 1%
of the DES dataset (100 tiles). We ran the pipeline on the entire DR2 dataset (10,169 tiles), identifying
22 new high-quality LSBGs. These galaxies were generally larger and lower surface brightness than
those detected by conventional algorithms. In addition, we found the model to be very efficient at
detecting Galactic cirrus and tidal features. The spatial distribution of all the detections appears to
have a strong visual correlation with maps of Galactic cirrus. We have thus demonstrated that the
Mask R-CNN framework could be very beneficial for detecting low surface brightness features.

Broader Impact

In this work, we used a well-established object detection/image segmentation algorithm for detecting
astrophysical objects. On societal scales, object detection algorithms are known to have a significant
impact, especially when trained for human detection, like facial recognition. The application of these
algorithms to the physical sciences is limited so far, and so studying them in this context provides a
unique opportunity to better understand their shortcomings. This can then help alleviate some of the
biases inherent in these algorithms.
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