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Abstract

Reliable modeling of conditional densities is important for quantitative scientific
fields such as particle physics. In domains outside physics, implicit quantile
neural networks (IQN) have been shown to provide accurate models of conditional
densities. We present a successful application of IQNs to jet simulation and
correction using the tools and simulated data from the Compact Muon Solenoid
(CMS) Open Data portal.

1 Introduction

The ability to model and sample from multi-dimensional conditional densities is of critical importance
in particle physics where almost all phenomena are subject to random fluctuations. One example is
the interaction of a jet, a collimated collection of particles (see, for example, [1]), with a particle
detector. The manner in which a jet interacts with a detector is usually modeled using a Monte Carlo
method based on the widely used GEANT4 toolkit [2]. GEANT4 provides a high-fidelity stochastic
simulation of particle interactions with matter, but comes with a high computational cost. In this
paper, we demonstrate how given a large sample of jets simulated with GEANT4, the jet response
function — which maps jets from the particle generation level (i.e., before the particles enter the
particle detectors) to the observed jets (i.e., jets recorded in the detectors) — can be accurately
modeled with an Implicit Quantile Neural Network (IQN). Moreover, the IQN performs this mapping
at a significantly faster rate than the original GEANT4-based simulation. In addition, an IQN can
model the inverse problem: the distribution of particle generation-level jets that could have yielded
a given observed jet. The efficacy of IQNs in modeling multi-dimensional conditional densities is
illustrated using simulated jet data provided by the CMS Collaboration at the CERN Open Data
Portal1.

1https://opendata.cern.ch/

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).

https://opendata.cern.ch/


2 Implicit Quantile Neural Networks

Given a training dataset comprising inputs x and a target y, the quantile regression problem is to
construct an estimator f(x;θ) with parameters θ of the quantile function, which is the inverse of the
cumulative distribution function F (y), conditioned on x. We denote a specific quantile by τ = F (y).

This problem can be cast as an optimization problem [3] in which the average loss,

L(θ) =
∑

t:yt≥f(xt;θ)

τ |yt − f(xt;θ)|+
∑

t:yt<f(xt;θ)

(1− τ)|yt − f(xt;θ)|, (1)

over a set of training examples (xt, yt) is minimized.

The use of neural networks as the estimator, f(x;θ), in Eq. 1 was first studied by White [4] and
Taylor [5]. In high-energy physics, deep neural networks that optimize this “quantile loss” have been
used to model detector response and to perform jet reconstruction [6, 7]. In those works, researchers
focused on accurately modeling specific quantiles of interest (for example, τ = 0.25). In contrast, we
model the full quantile function using deep neural networks by extending the network architecture
to include the quantile τ as an input — an approach first described by Ostrovski et al. [8]. That
work additionally introduced a method to handle multi-dimensional probability densities of the form
p(y(1), y(2), · · · , y(n)|x) as follows

p(y(1), y(2), . . . , y(n)|x) = p(y(1)|x)
n∏

i=2

p(y(i)|x, y(1), . . . , y(i−1)), (2)

where p(y(1)|x), p(y(2)|x, y(1)), p(y(3)|x, y(1), y(2)), . . . , p(y(n)|x, y(1), y(2), . . . , y(n−1)) are 1-
dimensional conditional densities.

In order to apply Ostrovski et al.’s method to the jet quantile regression problem, a single training
example (pT , η, ϕ,m) → (p′T , η

′, ϕ′,m′) is unrolled into the four training examples
(pT , η, ϕ,m, 1, 0, 0, 0, 0, 0, 0) → (p′T ),

(pT , η, ϕ,m, 0, 1, 0, 0, p′T , 0, 0) → (η′),

(pT , η, ϕ,m, 0, 0, 1, 0, p′T , η
′, 0) → (ϕ′),

(pT , η, ϕ,m, 0, 0, 0, 1, p′T , η
′, ϕ′) → (m′), (3)

where pT , η, ϕ,m are the jet transverse momentum, pseudo-rapidity, azimuthal angle, and mass,
respectively. The one-hot encoding after pT , η, ϕ,m in Eq. (3) specifies which target is associated
with the given unrolled example. To accommodate the form of the data in Eq. (3), we use a model
f(x, z,y′, τ ;θ) that includes inputs z and y′ for the one-hot encoding and the partially specified
target vector, respectively. The quantile τ is also an input, albeit one that is generated on-the-fly at
training time for each example at each epoch, by drawing an independent sample from U(0, 1).

We train a dense, feed-forward network on batches of unrolled examples (augmented with an
independent τ sample) sampled from the training set. At inference time, the trained model is used in
an autoregressive manner: the unrolled examples, each with the desired quantile, are provided in the
order shown in Eq. (3) with the quantities p′T , η

′, ϕ′ now the values predicted by the trained model,
rather than the values from the test data.

Since the trained model approximates four quantile functions — one quantile function at a time
depending on which one-hot encoding is used — the model is an implicit approximation of the
multi-dimensional conditional density p(y|x). The 1-dimensional conditional densities from which
p(y|x) is formed using Eq. (2) can be computed from p(yn|x, y(1), · · · , y(n−1)) = (∂fn/∂τ)

−1,
where fn is the model supplied with the nth one-hot encoding.

One problem that often arises in quantile regression is quantile crossing, where the approximation to
the quantile function is not monotonic. Prior work has attempted to mitigate this problem by imposing
constraints on the model architecture or by optimizing novel loss functions [9, 10]. Tagasovska and
Lopez-Paz, however, observed that the problem becomes significantly less pronounced when the full
quantile function is approximated [11]. In this paper, we propose a regularized average loss

L′ = L+ λ · 1[−f ′](f ′)2

that further alleviates this problem, where f ′ = ∂f/∂τ and λ is a hyperparameter. By penalizing neg-
ative gradients of f with respect to τ , the regularization term favors solutions that are monotonically
non-decreasing. This is equivalent to the condition (f ′)−1 = p(y|x) > 0.
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Figure 1: (Left) The predicted marginal raw reco-jet pT spectrum is compared with the raw reco-jet
pT data from the test set. The predicted histogram displays the median of 1000 predicted marginal
distributions. The ratio of the displayed spectra is shown in the lower plot. The upper and lower
uncertainties are the 0.84 and 0.16 quantiles of the bin count distributions. (Right) The distribution of
quantiles, each computed from the true reco-jet transverse momenta using the trained model.

3 Applications

3.1 Jets

In this study, IQNs are used to create a fast simulation of jets using the publicly available tools and
simulated data provided by the CMS Collaboration at the CERN Open Data Portal. Simulation of
particle collisions (typically, proton-proton collisions) at the Large Hadron Collider (LHC)2 begin
with the simulation of collisions between proton constituents — quarks and gluons — which are
collectively referred to as partons. Partons are not directly observed; therefore, their transformation
into observable particles called hadrons (via a process called hadronization) must also be simulated.
A particle clustering algorithm, called anti-kT [12], is then used to cluster the hadrons into jets. In
a simulation, the clustering can be performed either on the particles that would be identified from
measured tracks and energy deposits in particle detectors, or on the particles before they interact with
the detectors. The jets created using the latter method are generally referred to as particle generator
(or gen-) jets, while those created using the former method are called reconstructed (or reco-) jets. In
the examples studied here, gen-jets will be considered the ground truth, i.e., the jets that would be
observed with noise-free detectors. The reco-jets are usually subjected to corrections that render their
characteristics as similar as possible to those of the gen-jets, on average, using techniques based on
experimental and simulated data [1]. The reco-jets without these corrections will be called the raw
reco-jets, while those with the corrections will simply be called reco-jets.

The simulated CMS jet data [13], as well as the analysis code (which was modified for this study),
come from the CERN Open Data Portal [14] with Creative Commons CC0 waivers and GPL3
licenses respectively. Approximately 3.9 million simulated jets were extracted from the portal
of which ∼ 1.3 million were set aside as test data. Of the remaining ∼ 2.6 million examples,
∼ 2.34 million examples were used as training data, leaving the remaining ∼ 260, 000 examples for
model validation and hyperparameter tuning. The complete code to reproduce the results in this paper
can be found at the linked Github repository3 with a GPL3 license.

3.2 Detector-Level Jet Simulation

Jet simulation entails mapping particle-level jets (gen-jets) to the corrected jets (reco-jets) that are
observed in particle detectors. The IQN used for this mapping problem is a 5-layer, fully-connected

2https://home.cern/science/accelerators/large-hadron-collider
3https://github.com/alpha-davidson/IQNs-for-Jets
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Figure 2: (Left) The predicted gen-jet pT spectrum compared with the true gen-jet pT spectrum. Both
spectra are integrated over the raw reco-jet quantities. The ratio of the spectra is shown in the lower
plot. The uncertainties reflect the statistical fluctuations in the 1000 predicted spectra. (Right) The
distribution of quantiles, each computed from the gen-jet transverse momenta in the test set using the
trained model.

neural network with 50 nodes per layer. We use the Leaky ReLU activation function and train the
network using AMSGrad [15] using only CPU support. A typical training run lasted about 24 hours.

We assess the effectiveness of the trained model by comparing the predicted marginal density of
each component of the reco-jet four-momentum (p′T , η

′, ϕ′,m′) with the corresponding true reco-jet
marginal density from the data, both integrated over the gen-jet quantities. Specifically, we use the
trained model to generate 1000 reco-jet four-momenta predictions for each of the 106 gen-jets from
the test set. From these 109 predictions conditioned on the gen-jet inputs, we derive 1000 marginal
distributions for each jet parameter, by aggregating over randomly sampled batches of size 106. We
present the median of these 1000 marginal distributions for pT in the left panel of Fig. 1, alongside
the marginal distribution computed from the test data. We see that the predicted marginal distributions
are nearly modeled within uncertainty. We obtained similar results for the other three jet variables as
well, but have omitted them in the interest of space.

Additionally, we perform the following closure test to validate our approach. We construct a
cumulative distribution function (cdf) F (y′) for each of the 106 gen-jets in the test set, where
y′ ∈ {p′T , η′, ϕ′,m′}, for each component of the reco-jet momentum vector from our model’s 109
predictions. We then use this induced cdf to map each reco-jet measurement from the test set to a
quantile. If the IQN’s modeling of the quantile function, and therefore the conditional distribution, is
accurate, then we should expect the distribution of these quantiles to follow U(0, 1). We see that this
is indeed the case, as shown in the right panel of Fig. 1. Once again, we have chosen to only present
the results for pT and omit the qualitatively similar results obtained on the other three variables.

3.3 Jet Inverse Problem

An IQN can also be used to to solve the jet inverse problem: what gen-jets are consistent with being
the progenitors of a given raw reco-jet? Such a function could be useful, for example, in estimating
the particle-level spectrum of a jet quantity from the corresponding observed spectrum. In Fig. 2, we
show the marginal densities for the predicted gen-jet pT spectra, the test gen-jet data, and their ratio,
computed using the protocol outlined in Sec. 3.2, i.e. using 109 predictions divided into 1000 batches
of 106 each. The figure also shows the distribution of quantiles, this time computed from the true
gen-jet pT . The predicted spectra are again nearly within uncertainty across pT , and a closure test is
performed with similar results as the forward predictions.
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4 Conclusions

In this work, we presented an application of IQNs to the tasks of jet correction and simulation. Our
IQN architecture comprises a feed-forward, fully-connected neural network, which is straightforward
to train, particularly when compared to other generative modeling techniques such as GANs that tend
to be more unstable and require more careful tuning. Our approach utilizes a novel regularization
term that helps mitigate quantile crossing, without interfering with the convergence of the network.
The trained IQNs approximate the marginal densities of the jet variables nearly within the uncertainty
of the predictions, across the parameter space. Confirming that the multi-dimensional conditional
densities p(y|x) are modeled correctly beyond the correspondence shown in the closure tests presents
additional challenges, as those distributions are not explicitly present in the data, and is the focus of
ongoing study.

5 Impact Statement

Conditional densities are ubiquitous in particle physics. For example, they appear in statistical
models p(d|µ,ν), where d are observable data and µ and ν are parameters of interest and nuisance
parameters, respectively. They also appear in response functions r(y|x) that appear in multi-
dimensional integrals of the form o(y) =

∫
r(y|x)u(x) dx that map an unobserved spectrum u(x)

to an observed spectrum o(y) of which the jet 4-momenta spectra are a typical example. There is
a renewed push in particle physics to publish full statistical models. IQNs provide a simple and
effective way to both encapsulate statistical models and compute them very quickly, as well as to
model the numerous response functions that appear in the analysis of particle physics data at the
Large Hadron Collider and other particle physics research facilities. Finally, IQNs could be the
basis of very fast detector simulations that are automatically abstracted from existing and future
high-fidelity GEANT4-based event simulations.

From a machine learning standpoint, this paper introduces a novel regularization term to enforce the
requirement that the neural network learn a monotonically increasing quantile function. This modifi-
cation to the standard quantile regression loss function is potentially useful to any application that
requires a model to produce a statistically meaningful quantile function and cumulative distribution
function post-training.
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