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Abstract

Symmetries are a fundamental property of functions associated with data. A key
function for any dataset is its probability density, and the symmetries thereof are
referred to as the symmetries of the dataset itself. We provide a rigorous statistical
notion of symmetry for a dataset, which involves reference datasets that we call
“inertial” in analogy to inertial frames in classical mechanics. Then, we construct a
novel approach to automatically discover symmetries from a dataset using a deep
learning method based on an adversarial neural network. We test our method on
the LHC Olympics dataset. Symmetry discovery may lead to new insights and can
reduce the effective dimensionality of a dataset to increase its effective statistics.

1 Introduction

The equations of motion for physical systems are closely tied to their symmetries. Often these
symmetries are known from fundamental principles, but there are also systems with unknown or
emergent symmetries. Discovering and characterizing these symmetries is an essential component
of research in physics. Beyond their inherent interest, symmetries are also practically useful for
increasing the statistical power of a dataset for a variety of analysis goals. For example, a dataset
can be augmented with pseudodata generated by applying symmetry operations to the existing
data in order to create a larger training sample for various machine learning tasks. Neural network
architectures can be constructed that respect the symmetries (e.g. Convolutional Neural Networks
and translation symmetries [1]) in order to improve generalization and reduce the number of model
parameters. Futhermore, symmetries can significantly increase the size of a useful synthetic dataset
created from a generative model trained on a limited set of examples [2].

Deep learning is a powerful tool for identifying patterns in high-dimensional data and is therefore a
promising tool for identifying symmetries. A variety of deep learning methods have been proposed for
symmetry discovery and related problems. Neural networks can parametrize the equations of motion
for physical systems, which have various conserved quantities resulting from symmetries [3, 4].
Generic neural networks targeting classification tasks can encode symmetries in their hidden layers [5,
6]. This possibility can be used to actively learn symmetries by encoding a shared equivariance in
hidden layers across learning tasks [7]. Directly learning symmetries can be framed as an inference
problem given access to parameteric symmetric translations of the same dataset [8]. Another class of
targeted approaches can be found in the domain of automatic data augmentation. If a dataset can be
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augmented without changing its statistical properties, then one has learned a symmetry. Significant
advances in this area have used reinforcement learning [9, 10].

An alternative symmetry discovery approach that is flexible, fully differentiable, and simple uses
generative models [11, 12]. A typical generative model is a function that maps random numbers to
structured data. A deep generative surrogate model is trained so that the resulting probability density
matches that of a target dataset. For symmetry discovery, the random numbers are replaced with
the target dataset itself and the well-trained generator will implement the symmetry. In this paper,
we extend the generative model framework for symmetry discovery and introduce it to the physics
community. In particular, we build a rigorous statistical framework for describing the symmetries
of a dataset and construct a learning paradigm for automatically detecting generic symmetries. Our
deep learning setup is simpler than existing approaches and we develop an analytic understanding of
the algorithm performance in simple cases. This allows us to understand some of the dynamics of the
machine learning.

2 Statistics of Symmetries

Let X be a random variable on Rn governed by probability density function (PDF) p, and let x
be an instantiation of X. Naively, a symmetry is a function g : Rn → Rn which preserves the
PDF: p(X = x) = p(X = g(x))|g′(x)|, where |g′(x)| is the Jacobian determinant. While this is a
necessary condition, it is not sufficient. It is easiest to see this when n = 1. Let F be the cumulative
distribution function (CDF) of X . Then, F (X) ∼ U(0, 1), where U(0, 1) is the uniform random
variable on the interval [0, 1]. Conversely, F−1(U(0, 1)) is a random variable governed by the PDF
p (for technical details and proofs, see [13]). The uniform distribution on the interval [0, 1] has
many PDF-preserving functions such as the percentile inversion map: g̃(x) = 1− x. This map has
the additional property that g̃2(x) = x, so it appears to represent a Z/2Z symmetry. However, the
CDF map from above means that every probability density p admits a Z/2Z PDF-preserving map:
g = F−1 ◦ g̃ ◦ F . Clearly, not all one-dimensional random variables have a Z/2Z symmetry and so
the definition of symmetry must be stricter than simply PDF-preserving.

While there is a map as above for every one-dimensional random variable, each such variable requires
a different map. This suggests a sharper definition of symmetry that makes use of a reference
distribution. Given two PDFs p : Rn → R and pI : Rn → R, a map g : Rn → Rn is defined to be
a symmetry of p relative to pI if it is PDF-preserving for both p and pI . The reference or “inertial”
density pI is the analogue of an inertial reference frame in classical mechanics. This new definition
of symmetry will typically exclude quantile maps, like g̃ above, because the g̃ that works for one
random variable will typically not work for another (e.g Gaussian and exponential random variables).
While this new definition solves the problem of “fake” symmetries, it also introduces a dependence
on the inertial distribution. However, there is often a canonical choice for pI which reduces the
number of possibilities in practice. In particular, a natural choice for many physics datasets is to pick
the uniform distribution on Rn, where n is the dimension of the dataset.

3 Machine Learning Approach

Our general strategy for discovering symmetries in a dataset is to simultaneously learn two functions.
The generator, g : Rn → Rn represents the symmetry map and the classifier, f : Rn → [0, 1] tries
to distinguish the input data {xi} from the transformed data {g(xi)}. When the classifier cannot
distinguish the original data from the transformed data, then g is a symmetry. The technical details
of this statement are provided in Sec. 4. As described in Sec. 2, it is insufficient to require that g
preserve the PDF of the input data. There are several methods to implement the inertial distribution
condition into the learning strategy introduced above. One possibility is that the classifier f could be
applied to both the input dataset and data drawn from the inertial probability density. The training
procedure could penalize any map g which does not fool f for both datasets. Alternatively, one could
find all PDF preserving maps g and then post hoc select the ones that also preserve samples from the
inertial dataset. If the PDF preserving maps of pI are known, then one could restrict the set of maps
g and then perform an unconstrained optimization on the restricted search space.

Each of these methods has advantages and disadvantages. A key challenge with the first two options
is that they require sampling from the inertial density. When pI is uniform on Rn, this is not feasible.
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Figure 1: A diagram of the usual training setup for a Generative Adversarial Network (GAN) (left)
and the variation proposed in this paper for automatically discovering symmetries (right).

Approximate methods are possible, such as cutting off the support of pI a few standard deviations
away from the mean of p. The second method is computationally wasteful, as the space of PDF
preserving maps is generally much larger than the space of symmetry maps. This paper will focus on
the third option: restricting the set of functions g to be PDF preserving for pI .

For any open set O ⊆ Rn, a differentiable function g : O → O preserves the PDF of the uniform
distribution U(O)1 if and only if g is an equiareal map. The Jacobian determinant of a differentiable
equiareal map is |g′| = 1 and the probability density function is p(x) = 1

Vol(O) . Hence the PDF
preserving condition p = p ◦ g · |g′| is met if and only if |g′| = 1, i.e. g is equiareal. Ergo, our search
space to discover symmetries of physics datasets should be the space equiareal maps of appropriate
dimension. The set of equiareal maps for n > 1 is not well characterized. For example, even for
n = 2 not all equiareal maps are linear. A simple example of a non-linear area-preserving map is
the Hénon map [14]: f(x, y) = (x, y − x2). This makes the space of equiareal maps difficult to
directly encode in the learning. While the general set of equiareal maps is difficult to parameterize,
the set of area preserving linear maps on Rn, a subgroup of the general affine group Affn(R), are
well understood and characterized as topological groups of dimension n(n+ 1)− 1. These maps
even have complete parameterizations such as the Iwasawa decomposition [15] which significantly
aid the symmetry discovery process. We leave the discovery of non-linear symmetries to future work.

4 Deep Learning Implementation

The procedure described in Sec. 3 is implemented by modifying the learning setup of a Generative
Adversarial Network (GAN) [16]. In a typical GAN setup, a generator function g surjects a latent
space onto a data space2 and an auxiliary classifier distinguishes generated examples from target
examples. For symmetry discovery, the latent probability density is the same as the target probability
density. This setup is illustrated in Fig. 1. The GAN generator g and discriminator f are paramterized
as neural networks and trained simultaneously to optimize the binary cross entropy loss functional:
L[g, f ] = −

∑
x∈{xi} [log(f(x)) + log(1− f(g(x)))] , which differs from the usual binary cross

entropy in that the same samples appear in the first and second terms. This is similar to neural
resampler in Ref. [19] or step 2 of the OMNIFOLD algorithm [20].

1This may be an improper prior, but by carefully taking suitable limits the ideas go through, and the important
takeaway is that uniform distributions are preserved by equiareal maps.

2While all the GANs discussed here are bijective, GANs in general need not be. Symmetry discovery requires
the generator to be bijective. One may wish to use nomalizing flows [17, 18] instead in future work.
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Figure 2: (i) The LHC Olympics data, as is (left) and transformed by the generator discovered by the
neural net (right). (ii) The Kullback-Leibler divergence between φi and the randomly rotated and
symmetry rotated φf s on a log− log scale.

5 Particle Physics Example

We tested the above algorithm on one and two dimensional Gaussian data, both numerically and
analytically, and the results are very promising. As an application to particle physics, we use
background dijet events from the LHC Olympics dataset [21, 22]. These events are simulated using
Pythia 8 [23, 24] and Delphes 3.4.1 [25–27]. The reconstructed particles of each event are
clustered into R = 1 anti-kT [28] jets using FastJet [29, 30]; all events are required to satisfy a
single pT > 1.2 TeV jet trigger.

We represent each event as a four-dimensional vector (p1x, p1y, p2x, p2y), where p1 refers to the
momentum of the leading jet, p2 represents the momentum of the subleading jet and x and y are
the Cartesian coordinates in the transverse plane. We focus on the transverse plane because the jets
are typically back-to-back in this plane as a result of momentum conservation. The longitudinal
momentum of the parton-parton interaction is not known and so there is no corresponding conservation
law for pz . A natural search space would be SO(4), the group of all rotations on R4. SO(4) is a
six parameter group, specified by {θi}6i=1, which parametrize the six independent rotations, which
rotate as R1 : p1x → p1y, R2 : p1x → p2x, R3 : p1x → p2y, R4 : p1y → p2x, R5 : p1y → p2y, R6 :
p2x → p2y, where the notation R : a→ b means R(a) = a cos θ + b sin θ,R(b) = b cos θ − a sin θ.
The generator gθ is gθ(X) = R1R2R3R4R5R6 X.

It is difficult to graph six dimensional space, and the symmetries discovered do not lie in any single
plane of SO(4). Ergo, one must seek alternative methods to verify that the maps discovered by the
neural net are indeed symmetries. One can do so in two ways. First, one plots the data, X and gθ(X)
and compares their features. Fig. 2(i) demonstrates the similarity between X and gθ(X) suggesting
that gθ is a symmetry.

For the second method, one observes that due to momentum conservation, the LHC Olympics data
can be well-described by a single angle φi uniformly distributed over [0, 2π). If one applies an
arbitrary rotation, there is no reason the new internal angles φf = arctan 2(gθ(X)2, gθ(X)1) =
arctan 2(gθ(X)4, gθ(X)3) should be uniformly distributed anymore. However, if one of the symme-
try rotations discovered by the neural net is applied to X,φf must remain uniformly distributed, as
shown in Fig. 3. This effect may be quantified by computing the Kullback-Leibler (KL) divergence
of the two different kinds of φf againt φi. As one can see in Fig. 2(ii), the KL divergence of the
symmetries is clearly less than the KL divergence of the random rotations. The KL divergence drops
off linearly on the log− log plot which implies a polynomial interpolation form for the histogram.

6 Conclusions and Outlook

This paper provides a rigorous statistical definition of the term symmetry and proposes a novel,
flexible, and fully differentiable deep learning approach to symmetry discovery. The modified
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Figure 3: Four examples of the internal angle distribution of the LHCO data rotated by a (i) randomly
selected rotation, (ii) a symmetry in SO(4).

GAN framework termed Symmetry GAN was applied to physical data sets with promising results,
conforming with our predictions.

Moving forward, this area is rich with questions for further exploration. One may attempt to explore
non-linear symmetries of data by better parametrizing the space of equiareal maps over Rn. The
process of learning the symmetry discovery map also offers scope for further work, in particular in
the area of increasing the flexibility of the neural net, enabling it to learn the symmetry discovery
map in more general situations than is currently possible.

The code for this paper can be found at this Github repository.
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