Approximate Bayesian Computation for Physical
Inverse Modeling

Neel Chatterjee*

Department of Electrical and Computer Engineering
University of Minnesota - Twin Cities
Minneapolis, MN 55455
chatt0970Qumn. edu

Somya Sharma
Department of Computer Science and Engineering
University of Minnesota - Twin Cities
Minneapolis, MN 55455
sharm636Qumn. edu

Sarah Swisher Snigdhansu Chatterjee
Department of Electrical and Computer Engineering School of Statistics
University of Minnesota - Twin Cities University of Minnesota - Twin Cities
Minneapolis, MN 55455 Minneapolis, MN 55455
sswisherQumn.edu chatt019Qumn. edu
Abstract

Semiconductor device models are essential to understand the charge transport in
thin film transistors (TFTs). Using these TFT models to draw inference involves
estimating parameters used to fit to the experimental data. These experimental
data can involve extracted charge carrier mobility or measured current. Estimating
these parameters help us draw inferences about device performance. Fitting a
TFT model for a given experimental data using the model parameters relies on
manual fine tuning of multiple parameters by human experts. Several of these
parameters may have confounding effects on the experimental data, making their
individual effect extraction a non-intuitive process during manual tuning. To avoid
this convoluted process, we propose a new method for automating the model
parameter extraction process resulting in an accurate model fitting. In this work,
model choice based approximate Bayesian computation (aBc) is used for generating
the posterior distribution of the estimated parameters using observed mobility at
various gate voltage values. Furthermore, it is shown that the extracted parameters
can be accurately predicted from the mobility curves using gradient boosted trees.
This work also provides a comparative analysis of the proposed framework with
fine-tuned neural networks wherein the proposed framework is shown to perform
better.

1 Introduction

The transport characteristics of metal-oxide thin film transistors can be assessed by measuring the
mobility as a function of gate voltage in the channel. Often after obtaining experimental data, the
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mobility - gate voltage curves can be reproduced via numerical and physical models [2} |6, |3} |L1]].
However, these simulation models are parameterized and require manual tuning of parameters to
replicate the real-world experimental data. While these mathematical models provide a generalized
framework for testing the performance of particular materials, the manual fine tuning process can
become intractable when a large number of devices are being assessed simultaneously. It is useful to
have a methodology where the parameters, X, associated with a model need to be retrieved, given
a mobility curve Y. In this case, the mobility is a function of a given physical/numerical model,
F', which can be represented as Y = F'(X) + 7, where 7 denotes the noise term with an unknown
distribution.

Approximate Bayesian computation (aBc) encompasses likelihood-free methods, which only relies
on a given prior distribution for the input parameters. Stochastic simulations are performed where
the forward model is called repetitively for different input parameters. For each input parameter, a
similarity measure to the observed data is computed and only those input parameters are accepted
where the computed similarity measure is below a certain threshold [5} |1}, 9L [10]. The stricter the
threshold, smaller the number of samples accepted [9]]. This method allows us to approximate the
posterior distribution for each given input parameter, given some observation (mobility, in this case).
However, when the input dimension is high, aBc can be computationally expensive. To circumvent
this problem, adaptive aBc techniques have been proposed where the proposal distribution is tuned
sequentially to sample specific regions of the input parameter distributions more extensively [4},7].

In these contexts, we apply a two-stage aBc coupled with gradient boosted (GB) trees to accurately
predict the input parameters of any observed mobility curves. On both noise-free simulated datasets
and real world experimental datasets, we demonstrate the applicability of our framework. The first
stage aBc narrows down our search for parameters, while the second stage aBc refines the parameter
space further. This produces a posterior distribution of parameters that could have given rise to
the mobility curves. The aBc implementation can be seen as an adaption of rejection aBc where
all generated samples are stored for further computation instead of solely relying on the accepted
samples. However, to obtain precise point estimates, we implement a GB model to predict parameters
from mobility curves. We also compare our results to neural network models. These results showcase
that the inverse model has the potential to elude the need for the arduous and inefficient manual
tuning of parameters.

2 Methodology

Approximate Bayesian Computation - Preliminary Search. Approximate Bayesian computation
(aBc) was used to approximate the posteriordistribution of the parameters for the given data. For
the preliminary estimation, prior distribution for parameters are set as uniform. Using Bayesian
optimization, those parameter values are favored that result in minimizing the difference of TFT
model based mobility estimation from the observed mobility curve. Over Npyeiim, trials, the simulated
mobility curve, (i(V;) is compared to the input data, p(V,) and the mean squared error (summary
statistic) is computed between the two. If the loss (€) is below a given threshold, €y, the parameters
which resulted in the simulated mobility curve are accepted. Tree-structured Parzen estimator (TPE)
is used to select the next set of parameters.

Approximate Bayesian Computation - Refined Search. Once we perform the preliminary estimation,
we obtain the parameters, (o, pre, 10, Pre, Do, Pre, Nt Pre, and Ey p,.., which yield the lowest MSE.
Standard deviation using the posterior distribution is also computed, (0.5, 10,0, Do,o, Nt,6, and E; ;.
Using these two values for each given parameter, we define a new prior distribution as search space
as shown in Algorithm@ This process is repeated for a given number of iterations, Ny fined. After
the two runs, we obtain posterior distributions for the different parameters used in the TFT model.
This allows for a probabilistic inference for each parameter in the model.

Gradient Boosting. These aBc trials still fail to provide precise parameter values, which we obtain
from a gradient boosted tree fit. Using the set of chosen parameters and the corresponding mobility
curve, we train a gradient boosted tree (GB) model. The input to the GB model are the mobility
curves whereas the associated parameters which gave rise to these curves serve as our GB model
output. Once the model is trained, we query the model to predict the set of parameters which might
have generated our experimental mobility curve.



Algorithm 1 Approximate Bayesian Compu- Algorithm 2 Approximate Bayesian Compu-

tation of Parameters - Preliminary Estimation tation of Parameters - Refined Estimation
Result: 1 (V;) and po, To, Do, Et, Ny Result: 1 (V;) and po, To, Do, Et, Ny
Input: Npycim and €o Input: Nycfineqd and €o
Initialize: Initialize:
1. array Uaccepted = [ ]N><1 L. array flaccepted = [ ]N><1
2. array Parameters =| |nxs 2. array Parameters =[ ]nxs
Algorithm: Algorithm:
foriin I:N do foriin I:N do
€0 = 1 €0 = 1
while € < ¢y do while ¢ < ¢p do
po ~ [1,50] to ~ [fo,Pre — 0, fo, Pre + 0|
To ~ [50,600] To ~ [To,pre — 0, T0,Pre + 0]
Do ~ [1E12,2.28 E14] Do ~ [Do,pre — a, Do,pre + 0]
N; ~ [1E10,1E13] Ni ~ [Ni,pre — 0, Nt pre + 0]
E; ~ [—].07 —3] Et ~ [EtA,Pre — 0, Et,Pre + U]
ﬂ(Vg) = TFTmodel (uo, To, Do, Nt7 Et) ﬂ(Vg) = TFTm(idel(,LLO, T(), D(), Nt, Et)
eft] = [u(Vy) = A(Vy)l e[i] = [u(Vy) — i(Vy)]
end end
uli] = (V) ulil = a(vy)
Parameters[i] = [p0, To, Do, Nt, Et] Parameters[i] = [0, To, Do, N, Et]
end end

Deep Neural Network - Baseline Models. We Table 1: x? and MSE values for inverse model,
trained a shallow (3 layers - Shallow NN) and a Shallow neural network and deep neural net-
deep neural network (29 layers - Deep NN) as base- Work over five different experiments.

lines for comparison. To train the neural networks,

. . Metrics Inverse Shallow NN Deep NN
we used our physical model to generate data using Model
multiple combinations of input parameters. Gaus-
ip putp oL x2 (Exp 1) 4.5e-5 0.37 6.21
sian Processes based hyper.paramete? Optimization  —NSE Exp 1) 3505 072 2584
[8]] was used to find the optimal architecture. Once 2 (Exp 2) 0.43 0.043 25.42
the networks were trained, we can query the model ~_MSE (Exp2) 0.0070 346 5.78
using mobility curves and the neural network pro- quéE("gng) 2‘2‘252 8‘3? 123'4;0
vides point estimates for the multiple input parame- — =g, 4) 421 360 3.05
ters. The results of the two networks are compared ~ MSE (Exp 4) 0.001 337 35.46
to our inverse model as shown in Table 2. x” (Bxp %) 0.010 1.15 7.04
MSE (Exp 5) Te-5 501 0.45

X2 mean (£ 2.93 (£ 5.6) 2.23(+3.2) 9.84 (+ 8.0

S.D.)

MSE  mean 1.71e-3 (= 2.53 (£ 1.85) 1.57 (£ 12.4)

(£S.D) 2e-3)

3 Experiment Details

3.1 Noise Free Data

In the noise-free scenario, we use the physical model to simulate mobility curves using five different
sets of parameters (Experiments 1 to 5). The parameter estimation for these curves is carried out by
the approach outlined in section[2] The range of the priors used at the beginning of the inverse model
flow are detailed in Algorithm 1] Fig. [I|shows all the mobility curves simulated using the physical
model. We use the parameters estimated by the GB trees to simulate the mobility curves shown in
Fig. 1] It can be observed that our inverse model flow is able to identify the parameters from which
the mobility curve was generated. The chi-squared statistic is used as an evaluation metric and is

s — - 2 . .
computed using, x? = 3 %, where O; are the observed parameters obtained from gradient
boosting and E; are the parameters which was used to simulate the experimental curves. The baseline
neural networks were not able to predict the correct set of input parameters which yield the lowest

MSE with respect to the input mobility curve. The results for the five different experiments are shown
in Table
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Figure 1: Experimental curves are shown in solid symbols. The parameters which were used to
generate the curve are shown as insets in a text box. The predicted curves were simulated using
the parameters estimated by our inverse model. The chi-squared statistic denoted the goodness of
fit between the parameters used to generate the mobility curve and the ones predicted by gradient
boosting. The MSE denotes the mean squared error between the curve generated from the physical
model using the parameters in the text box and the curve generated by the physical model using the
parameters predicted by our inverse model.
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Figure 2: (a) Input parameters extracted for mobility curves obtained from experiments. The markers
are the data obtained experimentally from [|11] and the solid lines are simulated curves using our
physical model. (b), (c) and (d) show the posterior distributions obtained for devices processed at 500
, 400 and 300 °C respectively, obtained after the two-stage aBc search for the input parameters. The
black dashed lines in the three plots show the parameters estimated by the gradient boosted trees after
the two stage aBc, which were used to simulate the mobility curves (solid lines) in (a).

3.2 Validation with Experimental Data

We also demonstrate the applicability of the inverse model on real world data to find the parameters
for experimental data obtained from fabricated devices. We obtain the data from indium zinc oxide
(IZO) TFTs which is a candidate material for metal oxide TFTs [11]]. The posterior distributions of
the input parameters across the three devices are shown in Fig[2l We can observe that D, and N,
decrease as we go from 300 to 500 °C post-processing temperature. The parameter E; becomes less
negative and ji increases by an order of magnitude from the 300 to 500 °C device. Similar trends
were observed previously [[11]. Along with the posterior distributions, the experimental mobility
curves and the simulated mobility curves are also shown in Fig. 2[a). To generate the simulated
mobility curves, the parameters predicted by the GB trees at the end of the two-stage aBc were used.
We obtain an excellent fit between the data obtained from experimental real-world devices and the
ones predicted by our inverse model.



4 Conclusion and Future Work

In this work, we present a general method to explore the search space of an inverse problem using aBc
coupled with a GB trees at the end, which accurately predicts the input parameters. We validated this
approach with five different experiments consisting of simulated data where we obtained reasonable
chi-squared values with respect to the input parameters while obtaining low MSE values with
respect to the observed mobility curve. We ultimately used our inverse model to infer parameters
for experimental data. It was observed that our inverse model allowed us to draw some useful
conclusions, which are similar to the ones observed previously [11]. We are currently exploring
how to incorporate this technique in other physical problems to infer the input parameters. Since,
TFT model parameter posterior distribution does not exhibit multi-modality, using a deterministic
modeling method to obtain point estimates is appropriate in our application. For applications where
multi-modality is a concern, probabilistic modeling methods can be explored. Also, using neural
networks with standard backpropagation in these cases seem inefficient since the input values can
take a multitude of values, which is never known beforehand. Training data incorporating the whole
range of possible values will need to be generated first to train a neural network. The granularity of
the data that can be generated is then limited by the computation of the physical model, which can
be quite expensive. Using physics informed neural networks (PINN) to reduce the need of a large
training dataset is a viable alternative, one we are currently exploring.

5 Broader Impact

In our work, we successfully estimate parameters for accurately estimating mobility curves. This
creates opportunity to efficiently create general frameworks for testing performance of different
materials in device fabrication. For instance, new materials for fabricating high-performing thin-
film transistors (TFTs) for display applications can be discovered and optimized. As such, the
methodology can potentially be applied for parameter estimation in any model involving physical
processes and further investigation in that respect is required. We believe that this work does not have
any foreseeable negative societal consequence.
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