
Physics Informed RNN-DCT Networks for
Time-Dependent Partial Differential Equations

Benjamin Wu∗†
NVIDIA

National Astronomical Observatory of Japan
benwu.astro@gmail.com

Oliver Hennigh
NVIDIA

ohennigh@nvidia.com

Jan Kautz
NVIDIA

jkautz@nvidia.com

Sanjay Choudhry
NVIDIA

schoudhry@nvidia.com

Wonmin Byeon*

NVIDIA
wbyeon@nvidia.com

Abstract

Physics-informed neural networks allow models to be trained by physical laws
described by general nonlinear partial differential equations. However, traditional
architectures struggle to solve more challenging time-dependent problems. In this
work, we present a novel physics-informed framework for solving time-dependent
partial differential equations. Our proposed model utilizes discrete cosine trans-
forms to encode spatial frequencies and recurrent neural networks to process the
time evolution, achieving state-of-the-art performance on the Taylor-Green vortex
relative to other physics-informed baseline models.

1 Introduction

Numerical simulations have become an indispensable tool for modeling physical systems, which in
turn drive advancements in engineering and scientific discovery. However, as the physical complexity
or spatio-temporal resolution of a simulation increases, the computational resources and run times
required to solve the governing partial differential equations (PDEs) often grow drastically.

Recently, machine learning approaches have been applied to the domain of physical simulation
to ameliorate these issues by approximating traditional solvers with faster, less resource-intensive
ones. These methods generally fall into two main paradigms: data-driven supervision [1–5] or
physics-informed neural networks (PINNs) [6–9]. PINN-based solvers parameterize the solution
function directly as a nueral network. This is typically done by passing a set of query points through
a feed-forward fully-connected neural network (or multilayer perceptron, MLP) and minimizing a
loss function based on the governing PDEs, initial conditions (ICs) and boundary conditions (BCs).
This allows the simulation to be constrained by physics alone and does not require any training
data. However, the accuracy of traditional PINN-based approaches is limited to problems in low
dimensions and with simpler time-independent physics.

Although PINNs provide a well-principled, machine learning approach that promises to revolutionize
numerical simulations, their current constraints to problems with simple geometries and short times
severely limits their real-world impact. We address these shortcomings by introducing novel design
choices that improve the simulation accuracy and efficiency of PINN solvers on more challenging
problems, particularly in the regime of long time evolution where current PINNs severely struggle.

∗Equal contribution.
†Work done during NVIDIA AI Research Residency

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



10

Inputs

Patch-DCT Encoding

Latent Grid Network Multi-Resolution
Latent Context 

Grids

RNN propagation
[Frequency branch]

RNN propagation
[Spatial branch]

t

x

y+

ID
C
T

RNN propagation

H1 HT
Conv.
GRU

H0
(zeros)

H2
Conv.
GRU

t=0

Interpolated Context

Latent Context Generation
Physics-
Informed 

Loss

Decoding Physics

ℒ!"

ℒ#"

ℒ$%&

+

+MLP

Query
Points

ICs 
(encoded)

BCs 
(encoded)

…

t

x

y

B

W

W*H1+B W*H2+B W*HT+B

Patch-DCT Encoding 

Spatial
patches

DCT

t=1 t=2 t=T

DCT
patches

Frequency
reordering

Frequency
truncationInput

(a) Full Model Architecture

(b) RNN Propagation (c) DCT
D
C
T

D
C
T

BC

IC

Figure 1: (a) Full model architecture. (b) RNN propagation. (c) DCT encoding.

Our key contributions are as follows: (1) We propose a new approach for generating a grid of
latent context vectors to condition the spatio-temporal query points entering the MLP. Our method
requires no additional data and enables PINNs to learn complex time-dependent physics problems.
(2) Our work is the first to directly address space-time-dependent physics end-to-end in PINNs with
RNNs. Unlike previous approaches, our model does not need a separate method to handle the time
dimension. This is achieved by utilizing convolutional gated recurrent units (ConvGRUs) for learning
the spatio-temporal dynamics of simulations. (3) We separate the spatial and frequency domains,
adding flexibility for the network to learn more diverse physical problems. (4) We test the new
model against other architectures on a benchmark transient simulation problem and demonstrate
state-of-the-art results in accuracy.

2 Methods

In this paper, we propose a new model that enables PINN-based neural solvers to learn temporal
dynamics in both the spatial and frequency domains. Using no additional data, our architecture can
generate a latent context grid that efficiently represents more challenging spatio-temporal physical
problems. Our full architecture is shown in Figure 1 (a). It consists of three primary parts, which are
explained in more detail below: (1) latent context generation, (2) decoding, and (3) physics-informing.

Latent grid network The primary novelty of our method is the latent grid network that can generate
context grids which efficiently represent the entire spatio-temporal domain of a physical problem
without the need for additional data.

This network requires two inputs for the problem-specific constraints: ICs and BCs. The ICs are
defined as u0 = u(x1,..,N , t = 0) for each PDE solution function u over N spatial dimensions. The
BCs are defined based on the geometry of the problem for each spatial dimension. An additional
spatial weighting by signed distance functions (SDFs) can also be applied to avoid discontinuities at,
e.g., physical boundaries, but would not be necessary for, e.g., periodic BCs. Each tensor undergoes
an encoding step in either the frequency or spatial domain.

After compression, the representations enter the RNN propagation stage (Figure 1 (b)), in which
the BCs are split into an additive (Bbc) and multiplicative (W bc) component and combined with an
IC-informed state matrix (Ht). The final output at each timestep is computed as St =W bcHt+Bbc.
This method offers flexibility and efficiency in learning the dynamics of compressed simulations
[3]. To predict the simulation state at each successive timestep, the previous hidden state Ht−1
is passed through a convolutional GRU (ConvGRU) along with the previous output St−1; for
timestep 0, the initial state H0 set to zero and ICs are used as inputs. This occurs in a recurrent
manner until the final time T . Thus, for each timestep, the RNN propagation stage outputs St

2



which is then sent to a decoding step corresponding to the original frequency or spatial encoding:
S0 = u0, H0 = 0, Ht = ConvGRU(St−1, Ht−1), St =W bcHt +Bbc, t ∈ {1, . . . , T}.
The RNN propagation stage is duplicated across two branches: frequency and spatial. The frequency
branch transforms the spatial inputs to frequencies via the discrete cosine transform (DCT), motivated
by [10]. Figure 1 (c) illustrates our patch-wise DCT encoding step. First, the ICs and BCs are
separately split into spatial patches of size p × p. DCTs are performed on each patch to yield the
corresponding p × p frequency coefficient array. The tensor is then reshaped such that the same
coefficient across all patches forms each channel, and the channels are reordered by increasing
coefficient (i.e., decreasing energy). After the reordering, the channels are truncated by n%, so the
lowest n% of frequency coefficients (largest energies) are kept. This outputs highly compressed
representations for the ICs and BCs, which are used as inputs for an RNN propagation branch that
occurs completely in the frequency domain.

The spatial branch follows a traditional ResNet [11] architecture, in which the ICs and BCs each
pass through separate convolutional encoders consisting of sets of convolutional blocks with residual
connections. The inputs are downsampled with strided convolutions before entering the RNN
propagation stage in the spatial domain.

After RNN propagation, the outputs are combined to form the latent grid. In the frequency branch,
the output state at each timestep from the RNN is converted back into the spatial domain. This is
done by reshaping the frequencies from coefficients to patches, performing IDCTs, and then merging
the patches to reconstruct the spatial domain. The output of the frequency branch is denoted as Oft .
The representation in the spatial domain Ost is then added with learnable weights W o

t . Thus, the final
output is computed as: Ot =W o

t O
s
t +Oft . These combined outputs Ot for each timestep are used to

form the spatio-temporal latent context grids. Finally, grids at multiple resolutions are generated by
upsampling the outputs Ot using transpose convolutional blocks.

Decoding step The multi-resolution latent context grids generated from the previous step are then
used to query points input to the MLP. This decoding step follows the same principles as [12]. Given
a random query point x := (x, y, t), k neighboring vertices of the query point at each dimension are
selected. Using these neighboring vertices, the final values of the context vector are then interpolated
using Gaussian interpolation. This process is repeated for each of the multi-resolution grids allowing
the PINN framework to learn multi-scale spatio-temporal quantities.

Physics-informed loss The MLP outputs predictions that are then subject to a loss function deter-
mined by the ICs, BCs, and the PDEs. The losses are backpropagated through the entire combined
decoding and latent grid network and minimized via stochastic gradient descent. This end-to-end
training allows our two-branch convGRU model to learn accurate time-evolution of the spatial and
frequency domains in complex physical problems.

3 Experiments

We compare our model (RNN-SpDCT) against several other neural solver architectures using the
time-dependent 2D Taylor-Green vortex problem. This problem is commonly used to test and validate
spatial and temporal accuracy of both traditional and ML-based fluid solvers. We compare against
other PINN-based models and use identical ICs, BCs, and PDE constraints for each. We used a single
Tesla V100 16G or 32G for all experiments. The patch-wise DCTs use more GPU memory than
other models. The implementation details are not described due to the page limit. We will include the
details in the final version.

Baseline models We compare our proposed model against several PINN-based approaches: MLP-
PINN, RNN-S, RNN-pDCT, and RNN-SfDCT. All comparing models contain the RNN-propagation
and decoding steps except for MLP-PINN and all use a physics informed loss explained in section 2.
All use the same hyper-parameters as our model except for learning rates and decay steps. MLP-
PINN: a traditional MLP-based PINN solver used as a default model from SimNet [13]. RNN-S: a
PINN solver with a latent grid network consisting of a single spatial branch (ResNet). RNN-pDCT:
a PINN solver with a latent grid network consisting of a single frequency branch (DCT). RNN-
SfDCT:a PINN solver with a latent grid network consisting of both spatial and frequency branches.

3



Table 1: Quantitative comparisons on the Taylor-Green vortex. The model is trained and tested for
2π seconds. ν is the kinematic viscosity of the fluid. F and S indicate frequency and spatial branches.
FullDCT applies DCT to the entire input. All tabulated values have been multiplied by 102 for
readability.

Model Name Branch DCT type
Taylor-Green Vortex

ν = 1.0 ν = 0.1 ν = 0.01
velocity pressure velocity pressure velocity pressure

MLP-PINN - - 0.033 5.910 1.769 0.782 0.824 0.522

RNN-S S - 6.683e-8 0.075 2.975e-7 0.138 2.527e-7 0.020
RNN-pDCT F patch 1.979e-6 0.172 5.957e-7 1.383 8.804e-7 0.508
RNN-SfDCT S+F full 9.171e-8 1.177 2.961e-7 0.301 7.015e-6 0.018

RNN-SpDCT S+F patch 1.408e-7 0.044 3.107e-7 0.101 1.328e-6 0.012

The frequency branch in this model applies DCT/IDCT to the full input, foregoing the patching,
coefficient channel reordering, and truncation steps.

3.1 Taylor-Green vortex

The Taylor-Green vortex describes a decaying vortex flow which follows a special case of the
Navier-Stokes equations [14]. The incompressible Navier-Stokes equations in 2D are:

∂xu+ ∂yv = 0

∂tu+ u∂xu+ v∂yu = −∂xρ/ρ+ ν(∂xxu+ ∂yyu)

∂tv + u∂xv + v∂yv = −∂yρ/ρ+ ν(∂xxv + ∂yyv).

(1)

where u and v are the x- and y-velocities, respectively, ν ∈ R+ is the kinematic viscosity, and ρ is
the density.

The exact closed form solution for the Taylor-Green vortex over the domain x× y × t ∈ [0, 2π]×
[0, 2π]× [0, T ] is:

u = cosx sin yF (t)

v = − sinx cos yF (t)

p =
−ρ
4

(cos 2x+ cos 2y)F 2(t)

(2)

where F (t) = e−2νt and p is the pressure.

3.2 Results

Table 1 summarizes the performance of our model compared to the other PINN baselines as tested on
the Taylor-Green vortex. RNN-SpDCT achieves the best performance for all values of vorticity used
in the experiments. All RNN models achieve extremely accurate velocities compared to MLP-PINN.
Figure 2 visualizes the predictions and compares with the analytical solution on the Taylor-Green
vortex. The model produces much more accurate predictions for longer time steps (up to 2π seconds)
compared to MLP-based PINNs.

4 Conclusion

We presented a novel extension to the PINN framework designed especially for time-dependent PDEs.
Our model utilizes RNNs and DCTs to generate a multi-resolution latent context grid to condition
the traditional MLP PINN architecture. We demonstrated that our model can accurately predict
the solution functions in Taylor-Green vortex simulations (especially for pressures) and achieve
state-of-the-art results. Future directions include experiments on more complex problems, higher
dimensions, and longer time evolution.

4



Figure 2: Visualization of the predictions on Taylor-Green vortex with the viscosity ν = 0.1 at
around 3.5 seconds (left) and ν = 0.01 at around 6 seconds (right).

Acknowledgments and Disclosure of Funding

This work was completed as part of the NVIDIA AI Research Residency Program. BW acknowledges
support from a Grant-in-Aid for Scientific Research (KAKENHI Number 20K14706) of Japan Society
for the Promotion of Science (JSPS).

References
[1] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow approximation.

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

[2] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Prediction of
aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64(2):525–545,
2019.

[3] Oliver Hennigh. Lat-net: compressing lattice boltzmann flow simulations using deep neural networks.
arXiv preprint arXiv:1705.09036, 2017.

[4] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447, 2018.

[5] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations, 2020.

[6] Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. arXiv preprint arXiv:1710.00211, 2017.

[7] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.
10.045. URL https://www.sciencedirect.com/science/article/pii/S0021999118307125.

[8] Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems. arXiv preprint arXiv:1904.05417, 2019.

[9] Jonathan D Smith, Kamyar Azizzadenesheli, and Zachary E Ross. Eikonet: Solving the eikonal equation
with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2020.

[10] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the frequency
domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1740–1749, 2020.

5

https://www.sciencedirect.com/science/article/pii/S0021999118307125


[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[12] Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A Tchelepi,
Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. Meshfreeflownet: a physics-constrained deep con-
tinuous space-time super-resolution framework. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

[13] Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh
Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, and Sanjay Choudhry. Nvidia simnet™: An
ai-accelerated multi-physics simulation framework. In International Conference on Computational Science,
pages 447–461. Springer, 2021.

[14] G. Taylor and A. Green. Mechanism of the production of small eddies from large ones. Proceedings of
The Royal Society A: Mathematical, Physical and Engineering Sciences, 158:499–521, 1937.

6



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See section 3.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See section 3.
We will add more detailed experimental setup in the final version.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 3

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

7


	Introduction
	Methods
	Experiments
	Taylor-Green vortex
	Results

	Conclusion

