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Abstract

This paper provides a comprehensive end-to-end pipeline to classify triggers verse
background events, make online decisions to filter signal data, and enable the
intelligent trigger system for efficient data collection in the sPHENIX Data Ac-
quisition System(DAQ). The pipeline starts with the coordinates of pixel hits that
are lightened by passing particles in the detector, applies three-stages of event
processing (hits clustering, track reconstruction, and trigger detection), and finally,
labels all processed events with the binary tag of trigger versus background events.
The whole pipeline consists of deterministic algorithms such as clustering pixels
to reduce event size, tracking reconstruction to predict candidate edges, and ad-
vanced graph neural network-based models for recognizing the entire jet pattern.
In particular, we apply the Message-Passing Graph Neural Network to predict links
between hits and reconstruct tracks and a hierarchical pooling algorithm (DiffPool)
to make the graph-level trigger detection. We attain an impressive performance
( ≥ 70% accuracy) for trigger detection with only 3200 neuron weights in the
end-to-end pipeline.

1 Introduction
sPHENIX, introduced in Adare et al. [2015], is a new physics experiment that is under construction at
the Relativistic Heavy Ion Collider (RHIC) facility in Brookhaven National Laboratory and enables
an extremely rich jet and beauty quarkonia physics program to address fundamental questions about
the nature of the strongly coupled quark-gluon plasma discovered at RHIC. It will operate in two
years at much higher collision rates and greater instrumental precision than prior RHIC experiments.
The sPHENIX tracking system includes a MAPS-based vertex detector (MVTX) in the innermost
detector layer to take the snapshot of particle jets immediately after collision. We envision a run plan
for 2022–2023 consisting of 22 weeks of Au+Au at 50 kHz and extended periods of p+p and p(d)+Au
running at a 10 MHz collision rate. With the planned collision rate, sPHENIX will generate and
process detector data stream continuously in real-time at the speed of multiple terabits per second.
The data acquisition into disks and storage systems at this rate is cost-prohibitive. Furthermore, the
vast data volume will incur a significant burden in data management, catalog, and off-line analysis
and lengthens the path from data collection to science discovery.

The hardware trigger system used in the Large Hadron Collider (LHC) often sets thresholds on
observables related to the total measured energy, which is mentioned in ??. The hardware can not
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capture the majority of interesting decays with medium kinetic energy as in the sPHENIX experiment.
The demanding data selection to retain only less than 1% sPHENIX readouts and discard as many
background events as possible necessitates sophisticated trigger algorithms using machine learning to
recognize decaying patterns and make selection decisions in real-time.

Guest et al. [2018] summarizes recent efforts in using advanced statistical analysis, machine learning,
and deep learning methods in event analysis in LHC particle physics experiments. Most of these
efforts focus on removing noise, reconstructing tracks between different detectors, and identifying
whether tracks are generated by electron, photon, or τ lepton in Kazeev [2020]. These algorithms gain
extreme success in identifying low-level (local-level) physics properties, such as hit identification
and tracking reconstruction, such as Ju et al. [2021] and DeZoort et al. [2021]. There are multiple
attempts on event selection and other high-level physics tasks in Casa and Menardi [2018] and
Baldi et al. [2014]. Based on our experiments, many machine learning and deep neural networks
experience significant challenges in identifying high-level physics properties and deteriorate so
rapidly that they can hardly outperform simple models. We attribute this finding to multiple reasons.
There is some mismatch between the selected algorithm and available event data content, types, and
structures. These algorithms treat these physics tasks in isolation and focus on improving each task
independently and lack the co-design and integrated solutions that replicate the established physics
processing workflows.

There are two main challenges to design and implement an online event selection algorithm. The
first is to undertake this task end-to-end with limited information and raw input available at the
moment of decision making. The second one is to design a neural network that is compatible with
detector readout and capable of learning a wide spectrum of physics properties from low-level hits
to the high-level trigger. We overcome these two difficulties with a three-stage pipeline and attain
an impressive performance in online trigger prediction. The pipeline has three stages: 1) clustering
the pixel readings into hits, 2) connecting the hits that belong to the identical particles to reconstruct
event graphs, and 3) making the graph level decisions. The main contributions for this paper are as
follows:

1. Our event selection pipeline only needs the MVTX fast detector readouts and undertakes
multiple tasks that usually appear in offline data analysis and require accessing the recon-
structed event data from various (slow) detectors that are not available during real-time data
taking. Our work confirms the feasibility of moving these offline analysis tasks to online
systems for intelligent data collection.

2. The pipeline is highly effective in reducing events readouts in all three stages:the clustering
algorithm removes redundant hits, the tracking algorithm eliminates noisy hits with no
meaningful connections to other hits, and the event tagging throws out 90% background
events while retaining 37% signals, a 3.7× increase in efficiency compared to random event
selection.

3. The graph neural network (GNN) contains a few thousand parameters, only requiring a
few thousand multiply-accumulates and can be deployed in hardware accelerators, such
as field-programmable gate arrays (FPGAs) and graphics processing units (GPUs) via
TensorRT.

2 End-to-End Physics Trigger Detection Pipeline
Our pipeline consists of three stages that reflect the interaction between particles and detectors and is
consistent with the standard physics analysis workflow. During sPHENIX experiments, the generated
particles from events fly through the detectors and activate a sequence of pixels in the layers of
detectors. The detector readout contains the coordinates of these impinged pixels. Because silicon
detectors have the advantage of high-speed readout, it becomes the standard choice in the core of
detectors and enables a fast online triggering system. The disadvantage of this type of detector is
that readouts only contain simple geometric information and require a sophisticated multi-stage
processing pipeline to extract physical properties ranging from the low-level hits and tracks, to the
high-level jets and tags incrementally. This pipeline must bootstrap the high-level physics from the
lower-level features and recover a spectrum of physical properties from the detected hits. It also
needs to reflect the offline physics processing and derive the trustworthy physics event model.

Pixels Clustering The experiment data from the detector and simulated data have the following
features for each lightened pixel: the layer id, z index, ϕ of the cylindrical coordinates, and the
three-dimensional Cartesian coordinates. A particle might impinge a cluster of pixels when it
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Figure 1: Graph Neural Network for Tracking

flies through a detector with different energies and momenta. These pixels must be grouped and
represented by a cluster medoid. We use a deterministic algorithm to segment the contiguous pixels
into separate clusters. Many traditional clustering algorithms might incur the O(n2) time complexity
for calculating pair-wise distance for clustering. We cannot use these algorithms because of their
time complexity. Instead, we take advantage of the fact that the pixels activated by the same particle
must be adjacent in the detector space and design a connected component algorithm with a hash table
that hashes pixel indices to memory locations for the efficient search for neighboring pixels. The
clustering algorithm has a moderate time complexity of O(n) and can be easily parallelized for the
highly efficient execution that only incurs a fixed number of clock cycles in an FPGA-based hardware
platform with available O(n) processors.

Track Reconstruction Once we clean up the hits and remove redundant pixels in each event, we
reconstruct the tracks by connecting the hits across different detector layers to recover the trajectories
of particles. The upcoming sPHENIX detector contains three layers of interleaved silicon strips and
generates tracks with three to six hits. By connecting hits in the order of a hit’s interaction with
detector layers, we recover the trajectory of particles. We model the initial input pixels as the cloud
of hits and dynamically construct a graph with nodes (hits) and edges (track segments) to represent a
collision event and perform information propagation and convolution with the constructed graphs.
We adopt the Message-Passing Graph Neural Network proposed by Farrell et al. [2018] and divide
the track reconstruction into two steps. The first step is to identify compatible hits belonging to
the consecutive layers with similar angular coordinates and detector axial positions and connect the
compatible hits into candidate tracks. To prevent excessive connections, we apply the geometric
constraints for possible tracks, down select the candidate edges between two hits, and create the initial
event graphs G = (V,E), where V is the hit set, and E is the set of candidate edges. After selecting
the edge candidates, the tracking problem is simplified to a binary edge classification problem (link
prediction) to predict real track segments. In the second step, we iteratively apply the powerful graph
convolution operations to propagate hit information among nodes via candidate edges and enrich each
hit with multi-hop neighborhood information. Ultimately, we use a Multilayer Perceptron (MLP)
on two end nodes (hits) of each candidate edge and predict whether the candidate edge belongs to
the ground truth tracks. The GNN ensures that the graph-level information is learned during the
information diffusion processing, and the pairwise link prediction is performed in the context of the
entire event graph.

Trigger Prediction With DiffPool For the final step, we perform graph-level prediction based
on the graph topology (tracking) learned in the previous stage and identify triggering events with
characteristic decays. For graph-level trigger detection, a pooling method is needed to aggregate
an arbitrary number of nodes and edges into a graph embedding with fixed dimensionality. The
event tracks have a tree structure where the tree root represents the primary vertex, and each branch
represents a decay (secondary vertex), and thereby can be aggregated by the bottom-up hierarchical
pooling method from Ying et al. [2018] that preserves the original event structure and generates event-
level embeddings. The differentiable graph pooling method has some resemblance to the pooling
mechanism in Convolutional Neural Network(CNN). The pooling mechanism is straightforward in
images with a regular mesh structure and only needs to aggregate all pixels in a square patch based
on the maximum, summation, or average. Defining a good pooling operator on a graph structure is
much more challenging. The commonly used global pooling directly aggregates all nodes to one
vector to represent the whole graph. The global pooling might incur significant information loss
on critical physical properties, particularly in our experiment condition where the primary vertex is
close to the secondary vertex and the geometric track information of the ordinary and trigger events
appear similar. DiffPool performs pooling operations layer by layer in Figure 2 and learns the soft
assignment matrix between the nodes on a lower layer to nodes in an upper layer until the number
of nodes falls below a threshold. The top layer outputs the aggregation of node embeddings that
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represent the primary or secondary vertices. This learning-based pooling ensures that GNN extracts
the event’s cascaded decay patterns and exports the likelihood of a trigger event.

Figure 2: DiffPool Hierachical Pooling

3 Experiment Results
Experiment Dataset The dataset, provided by Huang [2018], contains simulated sPHENIX events
with p+p collision at 200 GeV center-of-mass energy. We only use the readouts of the MVTX detector
because the MVTX has no dependency on other detector components and is fast enough for the
detector to readout individual events without concerning the impacts of background events that take
place before the current one. For more details about sPHENIX events, Please refer to Adare et al.
[2015]. There are three categories of events in the dataset: events with no-decay, decay but not trigger,
and triggers. We further label events with no-decay and decay but not trigger as “negative” and label
trigger events as “positive”. The input data contains the 3D Cartesian coordinates of all hits. The
ground truth from the simulation contains real tracks between hits for tracking and trigger flags for
all events. The target information is only accessible in the objective function during the training stage
and has never been used in the inference stage.

Tracking We sampled the events and built a balanced training data of trigger events and other
events. Table 1 shows that the GNNs have impressive performance with more than 90% accuracy
in identifying tracks. Furthermore, the accuracy is highly dependant on the number of layers and
hidden dimensions of the MLPs in Graph Neural Networks. A larger number of parameters might
lead to higher accuracy while incurring more considerable variance in prediction, more complex
parameter space, longer training time, and higher costs for inference compared with the case of a
lower dimensions. To trade-off between parameter space and inference latency, we chose hidden
dimensionality to be 8, four MLP layers, and four iterations of message passing across all hits before
the final output layer of link prediction between the selected pairs of hits.

Table 1: Tracking Graph Neural Network Performance

Hidden dim MLP layers Number of Trainable Parameters Edge Classification Accuracy

8 2 457 93.2%
8 4 745 94.1%

16 2 1681 94.89%
16 4 2769 96.1%
32 2 6433 95.5%
32 4 10657 96.3%

Trigger Detection We use 500,000 trigger events and 500,000 non-trigger events as training sets
and 20K events for validation to induce the trigger prediction model. Table 2 shows that the accuracy
for different hidden dimensions stays around 70%. We attribute this finding to the fact that the simple
geometrical information of hits only requires a small dimensionality for the hidden representation.
During the inference, we use testing data with one percent of trigger events. Table 2 also shows the
model preserves 37% of triggers when we set the threshold to reject 90% of background events.

Table 2: DiffPool Trigger Detection Performance

Hidden dim Number of Trainable Parameters Accuracy AUC Efficiency Purity

8 2441 70.33% 76.84% 37.87% 3.83%
16 5937 69.73% 76.23% 37.30% 3.78%
32 17153 70.11% 76.55% 37.08% 3.75%
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4 Conclusion, Limitation and Future Work
The data generated by the sPHENIX experiment outpaces the existing data acquisition systems and
necessitates intelligent event tagging and filtering. This paper addresses this challenge and provides
an end-to-end solution for the online sPHENIX trigger detection. A tremendous effort focuses on
offline reconstruction and analysis once experiment data is collected and transferred to data centers
and clouds, such as a trigger algorithm based on GNN by Zhu et al. [2021]. Our endeavor is one of
the first attempts to shift many offline tasks, such as noise removal, event reconstruction, and tagging,
to the early stage of data collection, providing proof-of-concept for software-based intelligent triggers
for future physics experiments and expediting the turn-around from experiment to science discovery.
We also deploy this pipeline on FPGA in Xuan et al. [2021]
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