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Abstract

Particle accelerators require routine tuning during operation and when new isotope
species are introduced. This is a complex process requiring many hours from
experienced operators. The difficult control aspect of this problem is challenging
for traditional approaches, but offers to be a promising candidate for reinforcement
learning. We aim to develop an automated tuning procedure for the accelerators
at TRIUMF, starting with the Off-Line Ion Source (OLIS) portion of the Isotope
Separator and Accelerator (ISAC) facility. In this early stage of research, we
show that the method of Recurrent Deep Deterministic Policy Gradients (RDPG)
is successful in learning accelerator tuning procedures for a simple simulated
environment representing the OLIS section.

1 Introduction

The TRIUMF accelerator complex [8] drives Canadian accelerator-based science programs enabling
research in diverse fields ranging from nuclear physics to material sciences, life sciences and nuclear
medicine. The TRIUMF cyclotron is the centerpiece of the complex, which, as the most powerful
driver of an isotope separation on-line (ISOL) target in the world, gives the Isotope Separator and
Accelerator (ISAC) [18] facility a worldwide lead in the production of many rare isotope beams.
The short-lived radioactive isotopes are produced by impinging the primary proton beam from the
cyclotron onto a target. Rare isotopes produced in the target are ionized to form an ion beam that can
be separated by mass and then guided to the experimental facilities of the ISAC complex. The off-line
ion source (OLIS) [11], [12] provides stable ions ranging from Helium to Xenon for accelerator
tuning, commissioning, and stable beam experiments.

The procedure of tuning such accelerator beamlines is time-consuming and relies heavily on the
intuition and experience of the operators. The uncertainties involved in tuning are in part due to
unknown misalignments in the beamline components and a low level of observability of beam
characteristics. The tuning of a section such as OLIS can take up to 4 hours, during which an operator
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needs to constantly monitor various diagnostics and adjust the steering and focusing components in
order to counteract the effects of those misalignments. We hope to improve the speed and efficiency
of such tuning procedures by developing a reinforcement learning agent which can observe beam
diagnostics and predict the optimal tuning parameters. OLIS is selected as a starting point for this
endeavour due to its low operating current, and use of non-radioactive isotopes.

Since the full internal state of an operational particle beamline cannot be measured directly and must
be estimated based on measurements, such an environment can be modeled as a partially observable
Markov decision process (POMDP). Previous work [2] has shown that neural networks are effective
in learning physics related tasks, and in particular reinforcement learning can be successfully used for
beamline tuning [9]. Recurrent deep deterministic policy gradients (RDPG) [4] is an effective method
for solving control tasks for POMDPs and has been successful across a wide domain of control
tasks including driving [14], locomotion control [15], and frequency control [17]. We utilize the
RDPG architecture and test its effectiveness on predicting tunes for simulated beamline environments.
Further development of this work will hopefully lead to automation of beamline tuning in the real
world. While this may mitigate the need for human operators, we do not think it will fully replace the
efforts operators spend on tasks such as beamline development and problem diagnosis and mitigation.

2 Setup

TRANSOPTR [5] [7] is a beam envelope optimization capable of tracking the first moments (centroid)
and second moments (envelope) of the particle distribution through a beamline. [19] and [20] detail
the use of TRANSOPTR for the OLIS portion of ISAC. We create a simulated beamline environment
from TRANSOPTR by computing the centroid and envelope along the beamline at every time step.

2.1 Simulated Beamline Environment

A simulation for the OLIS beam is generated from TRANSOPTR, and we train a RDPG agent on
the simulation. The OLIS section (see A.1) consists of 8 electrostatic quadrupoles, 1 electrostatic
bender, 5 electrostatic y-steerers, 2 electrostatic x-steerers, 2 Faraday Cups (FCs), and 1 Rotary
Profile Monitor (RPM). The simulation starts just after the ion beam is extracted from the source, 71.6
mm upstream of the first x-steerer. The simulation ends right after the profile monitor IOS:RPM8.

We develop a Python wrapper for TRANSOPTR and construct 2 simulated environments compatible
with OpenAI gym [1]. TRANSOPTR is configured to discretize the centroid and envelope to 55
points along the beamline. During each episode, a random misalignment can be generated at each of
the optical components to produce a non-optimal beam centroid (see A.2). By training on this type of
environment, we hope an agent will learn optimal procedures for tuning beamlines with an unknown
combination of intrinsic misalignments. Transfer learning strategies [21] can then be applied to adapt
the agent to the real machine, which possesses some unknown misalignments (which we assume to
be constant throughout one tuning episode). At each time step t, an observation ot is produced from
a simulated measurement at each FC and RPM. The agent then predicts an action at, corresponding
to the adjustment angles of each steering element, and receives a reward rt and new observation ot+1.
The agent only has knowledge of the simulated measurements and therefore must learn to infer the
underlying physics of the beam and explore the beam state to maximize reward received.

YBeamlineEnv provides a simplified simulation of a beamline in only the vertical (y) dimension.
Transmission is calculated based on equation (2) in 1D for dimension y. The action space corresponds
to steering angles for a y-bender and 4 y-steerers. Note that the y-bender does not exist in the physical
beamline. However the number of tuneable parameters is preserved since the last physical y-steerer
is omitted in the simulation.

BeamlineEnv provides a simulation of the beamline in both x and y dimensions. Transmission is
calculated using equation (2) in 2D. A x-bender and 4 x-steerers are added to the environment, at
the same locations as those of the y-components in YBeamlineEnv, to form an action space of 10
steering elements. In reality, x-steering on OLIS makes use of a magnetic dipole and fewer x-steerers,
which differs from the setup presented in BeamlineEnv. We believe that BeamlineEnv sufficiently
captures the relevant degrees of freedom for the control problem at OLIS and can be used to verify
learning capabilities of the agent.
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2.2 Simulated Measurement

To simulate a measurement, we assume a Gaussian distribution for the particles and calculate
transmission using the centroid and envelope determined by TRANSOPTR. Locations and widths
of slits are incorporated along the beamline simulation according to their design in OLIS. We
approximate the upper bound for transmission by integrating the shifted Gaussian particle distribution
at each slit location. The incremental transmission at location i along the beamline is:

Θi,q =
1

2

[
Erf
(
wi − µi√

2σi

)
+ Erf

(
wi + µi√

2σi

)]
(1)

where σi is the rms-envelope of the beam, µi is the centroid of the beam, and wi is slit width, or the
wall width of 2cm if no slit is present.

The upper bound of total transmission at location k in dimension q is approximated (assuming no x-y
correlation in phase space) as:

Tk,q =

k∏
i=0

Θi,q (1D) and Tk = Tk,x · Tk,y (2D) (2)

A nominal current I0 of 10.0 + δ nA (with a noise δ randomly sampled between [-0.1, 0.1] at each
step) is assumed. The simulated measurement of a Faraday cup at location k is:

Ik = I0 · Tk (Beam) or Ik,y = I0 · Tk,y (YBeam) (3)

2.3 Reward Function

At each step in the episode, the agent receives a step reward rt = R(at, st+1) based off of some
reward function R for the current action at and next state of the environment st+1 after taking this
action. We consider two reward functions for our experimentation.

SSE Reward Function We construct an artificial reward function to incentivize a well-aligned
beam. The sum of squared errors (SSE) of the beam centroid from centerline along the beamline
is used along with the reciprocal term. This reward function gives a very good relation to beam
characteristics, but cannot realistically be measured on the physical beamline. This function is
described in detail in A.3.

Measurement Reward Function We construct a second reward function to be directly obtainable
from measurements on the beamline, to allow a better representation of the real machine. High
transmission at the last FC is rewarded while large adjustments of the steerer angles or large offsets
of beam centroids at the RPM are penalized (see A.3).

3 Recurrent Deep Deterministic Policy Gradients Agent

Deep deterministic policy gradients (DDPG) implements an actor-critic architecture which has shown
to be effective for high dimensional and continuous action spaces [13]. The addition of a long
short-term memory (LSTM) network [6] to the actor and critic networks forms the architecture for
recurrent deep deterministic policy gradients (RDPG) [4]. At each step, RDPG takes in a sequence
of the last ` observations (ot, ..., ot−`) to predict the next action at. This structure allows the agent
to keep a memory state from each successive term of the sequence of past observations and more
effectively learn in partially observed environments.

3.1 Model Architecture

We utilize the architectures from [4] and [13] and develop a RDPG agent using PyTorch [16]. During
prediction, we define the sequence of past observations (ot−`−1, ot−`, ..., ot−1) for some memory
length ` where oτ is the zero padded vector if τ < 0. This sequence is passed to the actor for
predicting the next action. We found that including previous actions as a part of the observation space
gave significantly better performance than only using the measurements as observation.
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3.2 Training

During training, the agent samples m mini-batches of trajectories (T i` )i=1,...,m =
(oid, a

i
d, r

i
d, ..., o

i
d+`, a

i
d+`, r

i
d+`, o

i
d+`+1)i=1,...,m (with random segments d, ..., d+`) from the episode

sequences (o1, a1, r1, ...ot, at, rt, ot+1)ii=1,...,m. The critic network is optimized from the Bellman
equation and the actor network using deterministic policy gradients following the approaches of [13].

4 Experiments and Results

We train the RDPG agent on both YBeamline and Beamline environments, using SSE and Measure-
ment reward functions. For each of these cases, the environment generates new random misalignments
for the beamline at every episode, effectively allowing the agent to train on "new" beamlines. We
also emulate training an agent from scratch directly on the physical beamline by creating a fixed
version for both environments, called FixedYBeamlineEnv and FixedBeamlineEnv. For the fixed
environments, misalignments in the optical components of the beam are kept constant across episodes.
Hyperparameters for all experiments are described in A.4. We utilize an exponentially decaying
exploration strategy which we termed Normal Noise Strategy to explore the action space (see A.5).

Results for training are shown in A.6. For each of YBeamline and Beamline environments, the RDPG
agent was trained on 14 different random seeds, and we recorded the number of episodes trained
before the agent successfully solves the environment. Each agent was trained for 160000 episodes
with 10 steps per episode.

Figure 1 plots the number of training episodes required before solving for each environment and
reward function. Due to the simplicity of YBeamlineEnv, it is easier to obtain high rewards using
MSMT reward, hence its faster training times compared to SSE. The inverse is observed for the more
complex BeamlineEnv, where the 2 dimensional problem increases the difficulty of obtaining a high
MSMT reward. A demo of the trained agent for BeamlineEnv can be seen in A.7. Figure 2 shows
number of training episodes to solve fixed environments. The results indicate training from scratch
on a physical beamline would be impractical due to the large number of training episodes required.

Figure 1: Box plot of YBeam and Beam training
using SSE and MSMT reward functions. Solved
criterion is an episode reward of > 60 for Beam
using MSMT reward and > 100 for all others.

Figure 2: Box plot of FixedYBeam and Fixed-
Beam training using MSMT reward function.
Solved criterion is an episode reward of > 100
for FixedYBeam and > 60 for FixedBeam.

5 Limitations

Hyperparameters chosen for our experiments were determined from comparisons between various
single-run trials which may have high variability and we believe a more thorough examination of
the hyperparameter space will lead to improved agent performance. While RPDG was utilized for
this work based off of its success from past literature, other reinforcement learning algorithms and
methods should also be be explored for future iterations. From our current definition of the reward
function (which incentivizes high transmission of the beam), it may be possible for the agent to
develop a tune that is apparently optimal by maximizing only those characteristics, while producing
undesired beam behaviour further downstream. Future work should perform additional analysis of
the downstream impacts of tuning and may involve the inclusion of longer portions of the beamline
or implementation of sophisticated reward functions.
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6 Conclusion

The complex control problem of accelerator tuning can be tackled with methods of reinforcement
learning. We have developed and demonstrated a framework for training RDPG agents on simulated
beamlines. Our experiments indicate that training an agent from scratch directly on the physical
beamline may not be feasible due to the large number of episodes required. However, there is much
potential for transfer learning techniques as a trained agent is able to achieve excellent tuning results
in very few steps on new randomly generated beamline episodes. The framework has the potential to
be trained on a more accurately simulated environments and deployed to the physical beamline. This
work shows promising applications of reinforcement learning in automating and improving tuning
procedures for particle accelerators.
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A Appendix

A.1 OLIS

Figure 3: Sketch of the ISAC Offline Ion Source (OLIS)

A.2 Simulated Environments

Figures 4, 5, 6, and 7 show the simulated environments created from TRANSOPTR. The horizontal
scale measures distance along beamline (s) in cm, and the vertical scale measures the width of the
beamline wall (in x or y) in cm. The solid line represents the beam centroid and the dashed lines
represent the envelope for the x (blue) and y (red) dimensions. The vertical dashed lines mark the
locations of the bender (dark green), steering elements (light green), and quadrupoles (red). The thick
solid lines marks the locations of Faraday Cups FC3 (blue) and FC6 (green), and RPM (red). For
misalignment, a random offset (sampled from a normal distribution with standard deviation of 0.05
cm) in x and y was applied to each of the quadrupoles.

Figure 4: YBeam Environment with
no misalignments

Figure 5: YBeam Environment with an instance
of randomly generated misalignments

Figure 6: Beam Environment with
no misalignments

Figure 7: Beam Environment with an instance
of randomly generated misalignments
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A.3 Reward Functions

For each time step t, a reward rt is obtained from rt = R(at, st+1) for the action at taken at that
step and next state of the environment st+1, using some reward function R.

SSE Reward Function uses the SSE along with the inverse term in order to give larger positive
reward for the case of very well-aligned beams. This reward exploits the simulated environment, as it
will not be reproducible through real measurements of a physical beamline. For YBeamlineEnv, it is
defined as:

RSSE
t,y = RSSE

y (at, st+1) = −
M∑
i=0

µ2
i,y +min(

1∑M
i=0 µ

2
i,y + δ

, 100) (4)

for every centroid µi,y for all M points along the beam, and δ = 0.0001 to avoid zero division.

For BeamlineEnv:
RSSE
t = RSSE(at, st+1) =

1

2
(RSSE

t,x +RSSE
t,y ) (5)

Measurement Reward Function uses only measurable information from the FC, RPM, and steer-
ing positions. Separate terms are constructed to incentivize high transmission at FCs, and to penalize
large offsets at the RPM and large steering angles.

The transmission reward was designed to give a reward of 10 per step for 85% transmission based on
I∗ in equation (3):

RFC
t = (

I∗
8.5

)4 · 10 (6)

The action penalty Pactions is defined as:

Pactions = α ·
n∑
i=0

|ai|3, (7)

for a space of n actions and scaling factor α

The RPM penalty PRPM
q is defined as:

PRPM
q = min(β · µ2

q, 10) (8)

for the beam centroid (in dimension q) µq at the RPM, and scaling factor β,

The measurement reward function is defined for YBeamlineEnv:

RMSMT
t,y = RMSMT

y (at, st+1) = RFC
t − Pactions − PRPM

y (9)

and for BeamlineEnv:

RMSMT
t = RMSMT(at, st+1) = RFC

t −
1

2
(PRPM
x + PRPM

y + Pactions) (10)

Scaling constants were used to appropriately scale episodic rewards:

α = 250000 such that the upper bound of action magnitudes of 0.02 rad will give Pactions = −10

β = 250 such that a RPM measurement of magnitude 0.2 cm or more will give PRPM
q = −10

A.4 Hyperparameters

We use a batch size of 64, discount factor γ = 0.99, soft target update ratio τ = 0.005, actor learning
rate α = 0.001, critic learning rate β = 0.002, a replay buffer with capacity of 20000 episodes, and a
memory length ` = 5. The Adam [10] optimizer is used for all network optimizations. All hidden
layers uses ReLU [3] activation, and the output layer of the actor applies a tanh to bound all actions.
For all 1D environments, we use an actor RDPG network structure with two fully connected layers
of 16 and 32 units, connected to a LSTM layer with hidden dimension of 32, connected to 2 fully
connected layers of 64 and 32 units. The critic network has two fully connected layers of 16 and 32
units for the observation input and one fully connected layer of 32 units for the action input connected
to a LSTM layer with hidden dimension of 64 units, connected to an output layer of 64 units. For 2D
environments, all fully connected and LSTM layers are doubled in size.
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A.5 Normal Noise Strategy

During training, an exponential decay strategy for exploration is defined with standard deviation σm
at step m:

σm =

{
σ0 · ( σ0

σf
)−n/N if m ≤ T

σf if m > T
(11)

for an initial σ0, final σf , and decay steps T .

Each selected action ai is added with some noise ai ← ai + ν(σt) ∗ amax where amax is the action
bound and ν(σm) samples a random normal noise with standard deviation σm
For both varying environments, σ0 = 0.2, σf = 0.001, and T = 900000.

For the fixed environments, T is set to 1000

A.6 Training Plots

Experiments were carried out for each environment and reward function. Reward vs steps was
averaged over 14 random seeds and plotted in Figures 8, 9, 10, and 11. Baseline reward was generated
by averaging the rewards obtained from running 100000 episodes in the environment and taking no
action at each step.

Figure 8: Average over 14 seeds of reward vs
steps during training for YBeam with

SSE reward function

Figure 9: Average over 14 seeds of reward vs
steps during training for YBeam with

Measurement reward function

Figure 10: Average over 14 seeds of reward vs
steps during training for Beam with

SSE reward function

Figure 11: Average over 14 seeds of reward vs
steps during training for Beam with

Measurement reward function
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Training times required around 16 hours for YBeamEnv and around 20 hours for BeamEnv. Up to 8
agents can be trained on a single GeForce RTX 2080 GPU, and each agent utilizes around 2.7 Intel(R)
Xeon(R) Gold 6130 (2.10GHz) CPUs during training.

A.7 Demo

Figure 12 shows a demo of a trained agent on BeamlineEnv with the Measurement reward function,
predicting on a random episode. Transmission to FC3 and FC6, measurements at the RPM in x and y,
step reward, and episode reward are included in each figure. Initial transmission to FC6 was 0% and
the agent achieved a tune with 82% after 5 steps. In the remaining steps, the agent maintained this
level of transmission while slightly improving in alignment, resulting in a total episode reward of 69.

Figure 12: A demo episode of a trained agent predicting on a newly generated instance of BeamEnv.
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