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Abstract

In this paper, we develop a Wasserstein autoencoder (WAE) with a hyperspherical
prior for multimodal data in the application of inertial confinement fusion. Unlike
a typical hyperspherical generative model that requires computationally inefficient
sampling from distributions like the von Mis Fisher, we sample from a normal dis-
tribution followed by a projection layer before the generator. Finally, to determine
the validity of the generated samples, we exploit a known relationship between the
modalities in the dataset as a scientific constraint, and study different properties of
the proposed model.

1 Introduction

In this paper we explore the application of geometric priors inside generative models of scientific data –
particularly data obtained from extensive computational simulations of inertial confinement fusion [5].
Such datasets present unique opportunities and challenges for generative models in that the underlying
analytical generative process is typically known (for e.g., complex simulation codes), and there is
a well understood demarcation between valid and invalid samples via known scientific constraints,
laws etc. In this context, deep generative models present an exciting opportunity to explore the
physics manifold efficiently, to provide useful priors for solving challenging inverse problems, and to
enable new insights into the underlying physics governing these datasets. Consequently, the past few
years have witnessed several successful applications of generative models in a wide-range of physics
problems ranging from inertial confinement fusion [1] to cosmology [8] and high-energy particle
physics [10].
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A common assumption in most of these cases is that the underlying geometry of the physics manifold
is Euclidean, whereas this is often not the case in scientific or non-scientific datasets. This has led to
the development of geometry-driven approaches that have improved the understanding, interpretability
as well as the performance of deep models [4, 2, 3, 9]. Many approaches exploit geometry of the
data to inform design choices of neural networks – molecules as graphs [4], or spherical images from
drones or robots [2]. Furthermore, several studies have also focused on building better latent spaces
in deep models via geometric constraints. These have been especially helpful in cases where the
latent manifold of the data (but not the observed data itself) is known to come from a non-Euclidean
manifold such as in the case of spherical [3] or hyperbolic spaces [9, 12, 6]. While the geometry
of the dataset is explicitly known in the former, in the latter setting, the latent space is assumed to
be a curved manifold with the expectation that the curvature of the latent space matches the true
structure in the data. With generative models in particular, the Euclidean family of approaches tend
to be efficient to train, and sample from, while their non-Euclidean counterparts are more accurate in
capturing the underlying geometry though typically being more computationally involved.

In this work, we investigate an intermediate approach that places a geometric prior in the generator,
without enforcing any kind of geometric constraint on the latent space. We find that this simple re-
parameterization allows us to place geometric constraints inside the generative model while still using
a prior distribution in the Euclidean space. Specifically, we study the hyper-sphere as the manifold of
choice, due to several reasons – it has been shown to have natural regularizing properties [3], it is
relatively easy to incorporate in existing neural networks, and the fact that a normal distribution in the
Euclidean space when projected onto a hyper-sphere becomes uniformly distributed on its surface. In
this regard, we extend the Wasserstein autoencoder (WAE) [11] with such a re-parameterization. In
the standard WAE, the latent space is encouraged to match a prior, typically a normal distribution,
during training. At inference time, samples from the prior are passed through the generator to obtain
samples from the data distribution. Our approach places an explicit projection layer in the generator
following the latent space. This allows us to place a hyper-spherical constraint while still allowing us
to sample efficiently from a standard normal distribution.

Inertial Confinement Fusion We use ICF as a test-bed for our analysis. ICF [7] uses powerful
lasers to heat and compress a millimeter-scale target filled with thermonuclear deuterium-tritium
(DT) fuel. The goal is to drive fusion reactions that self-heat the DT fuel leading to ignition and
propagating burn. A variety of diagnostic instruments are used to observe the fusion implosions that
can be used to understand and drive the next set of experiments – these range from x-ray and neutron
cameras that create spectrally resolved (i.e. hypercolor) images, as well as a host of spectrometers
and radiochemical diagnostics that produce key scalar features. As such, each sample in our dataset
consists of a set of these multi-modal diagnostic quantities. As a notion of scientific validity, we
use thermal equilibrium to relate predicted ion temperatures (as part of the scalars) and estimates of
electron temperature formed by ratios of x-ray image brightnesses. As shown in the experiments, this
manifests as a strong linear relationship between the predicted scalar, and the mean brightness of the
x-ray images. Considering that the data from actual experiments tend to be highly sparse due to the
cost of running multiple experiments, we restrict our analysis to a simulated ICF dataset. This forms
a 1D semi-analytic simulator that outputs four images as well as a set of scalars that can be seen as
samples from a high dimensional distribution.

2 Experiments and Results

2.1 Dataset details

We use the JAG Inertial Confinement Fusion Dataset [5] with 100K samples for our experiments. Each
sample consists of 4 X-ray images of size 64× 64, where each image corresponds to a measurement
at a pre-defined energy. The 4 images are treated as channels, resulting in volume of 64× 64× 4.
Along with the images, there are 15 scalars that measure quantities such as yield, ion-temperature,
pressure and other physical quantities. One of the scalars (ion temperature) is directly correlated to
the image temperature (integral of the image) in that they are both independent measurements of
the same quantity. We exploit this fact as a scientific prior to determine the validity of the generated
samples.
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2.2 WAE with a hyper-spherical Prior

We explore the use of a hyper-spherical embedding inside the generator while keeping the latent
space Euclidean. This allows us to place a prior over the latent space using a standard normal
distribution which is easy to sample from, as opposed to more complex distributions such as the
von Mises-Fisher (vMF). In doing so, we exploit the fact that a normal distribution projected onto
to a hyper-sphere forms a uniform distribution on its shell. We demonstrate a proof of concept by
extending the Wasserstein autoencoder (WAE) [11] with an additional layer that projects the latent
vector obtained from the encoder onto a unit hyper-sphere.

We define a unit hyper-sphere as Sd−1 = {x ∈ Rd : ||x||2 = 1}. Our proposed model consists
of the following: an encoder network, E : (I,S) → z; where I denotes a multi-channel spectral
image and S denotes a set of scalar diagnostics such as temperature, energy yield, pressure etc.
To account for the multi-modal nature of the data, we use convolutional layers to process the
image channels, and a fully connected layer to process the scalars. These are then stacked after a
few layers before jointly predicting the bottleneck representation, z. Next, we define a projection
map P : z → Sd−1, followed by a generator network G : Sd−1 → (I,S). Here the projection
map P is defined as z̃ = P(z) = z/||z||2. Thus, the encoder-decoder pair mapping is given by:
(I,S)

E−→ z
P−→ z̃

G−→ (I,S).

We keep the discriminator from the standard Euclidean WAE unchanged, and use an adversarial
objective to get the latent space z to match the prior, which in our case is the zero mean unit variance
normal distribution, N (0, I). During training, there are two key procedures that need to be taken into
account–the generator is only fed samples from the hyper-sphere and the discriminator samples from
the Euclidean Gaussian prior. This makes our approach simple to optimize as opposed to models
with explicit hyper-spherical distribution. At test time, we simply sample from the prior and pass it
along to the generator to create new image and scalar data.

We used the same network architecture as in [1], with additional batch norm layers and 16 dimensional
latent space. We trained the model for 600 epochs using Adam optimizer with β1 = 0.5 and
β2 = 0.999 and learning rate 1e− 3. All the experiments run on a 22 GB, Quadro RTX 6000 GPU.

2.3 Evaluating the reconstructions with the scientific prior

We evaluate the quantitative performance of proposed model using mean squared error (MSE)
and R-squared statistic (R2) for images and 15 scalars respectively on the test set. Our approach
achieves MSE of approximately 0.002 and R2 score of approximately 0.99. We show a few sample
images and their reconstructions from the four channels (each row) in the Figure 1. We validate the
reconstructions of test samples further using the scientific prior as shown in the right panel of Figure
1, where each sample is represented as a point on the line. We see that the relationship between
the images and scalars is preserved extremely well demonstrated by the strong linear relationship
between the estimated temperature from the images and the temperature scalar.

Figure 1: Example of original data (left) and the corresponding reconstructed data from the trained
hyper-spherical parametrized WAE model along with their scientific priors (right).

Interpolation in the latent space. We evaluate the continuity of the learned latent space, by
performing interpolation between latent embeddings of training data. Since it is Euclidean, we
perform linear interpolation between any two given training samples. We observe that the generated
samples also satisfy the scientific constraint, indicating that the path taken by the geodesic is reflective
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Figure 2: Left: Interpolating between two points in the latent space results in interpolation in
1D scientific prior manifold. Right: The corresponding images (only one channel is shown here)
obtained from interpolation between the top left as the starting and bottom right as the end point.

Figure 3: Evaluating the scientific prior on generated data (left) and variation in number of valid
generated samples based on deviation from the scientific prior for different threshold values and
different radius of hyper-sphere (right).

of the true path on the physics manifold. We sample a few images from this path in the rightmost
panel of Figure 2, where top left shows the starting point and the bottom right is the end point.
As expected, we see that the learned latent space captures the semantic information in the dataset
accurately – for e.g., indicated by the direction of the tail in the image.

Evaluating scientific validity of generated samples. Once the WAE is trained, we sample from
the prior and pass them through the generator to create new samples from the ICF dataset. To assess
the scientific validity of these samples, we compute the scientific constraint on each one of these
samples. Since the generator is not conditioned to follow the scientific prior, generated samples do
not necessary result in valid simulation data. We observe that only a subset of samples satisfy the
scientific constraint. Figure 3 shows evaluated scientific prior on generated samples.

Effect of the hyper-sphere radius As all the samples from the prior undergo hyper-spherical
parametrization, we obtain invariance w.r.t to the spread of the normal distribution, i.e., sampling
from N (0, k), results in the same distribution on the hypersphere. This sampling strategy indicates
that the proposed model does not compromise on the diversity of generated samples, as opposed to a
standard WAE, where there is typically a trade-off between diversity and sample quality depending
on the variance of the normal distribution.

Next, we study the effect of changing the radius of the hypersphere at test time on sample quality
using the scientific constraint. Since, we parametrize the latent space on a unit hypersphere, smaller
as well as larger radii generate fewer valid samples. We ablate on this in Figure 3 for four different
threshold values (as a measure of valid vs invalid samples). Here the threshold is used to determine
the deviation from the line fit on the training data. Finally, in Figure 4, we sample around five different
points using them as the mean in a normal distribution with unit variance in the latent space. By
mapping the generated samples onto the scientific constraint, we see that they manifest with different
spreads around the the training sample – we hypothesize that these differences suggest irregularities
in the training distribution.
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Figure 4: Sampling in the neighbourhood of training samples, generates samples that follow the
scientific prior, the reduced variance indicates that the training samples are better sampled on the top
end of the curve.

2.4 Discussion

In this paper, we study hyper-spherical models for inertial confinement fusion. We modify the
Wasserstien autoencoder (WAE) by including an additional normalizing step that maps the latent
space onto a unit hyper-sphere. This presents a proof of concept for incorporating geometric priors
(hyper-spherical, hyperbolic, or mixed curvature) into generative models for scientific datasets.
Further, these models may also help better determine the geometry and curvature of the underlying
physics manifold.
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Check List
• Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions

and scope? Yes
• Have you read the ethics review guidelines and ensured that your paper conforms to them? Yes
• Did you discuss any potential negative societal impacts of your work? No
• Did you describe the limitations of your work? No
• If you are including theoretical results

– Did you state the full set of assumptions of all theoretical results? No, there are no theoretical
results

– Did you include complete proofs of all theoretical results?No, there are no theoretical results
• If you ran experiments...

– Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? Yes, specified in the end of section
2.2

– Did you specify all the training details (e.g., data splits, hyper-parameters, how they were
chosen)? Yes, specified in the end of section 2.2

– Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? The random seeds are fixed in our experiments.

– Did you include the amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? Yes, specified in the end of section 2.2

• If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...No, we are
working on a new data.

– If your work uses existing assets, did you cite the creators? Our approach builds on WAE. We
have cited the corresponding paper (reference no 11).

• If you used crowdsourcing or conducted research with human subjects... No
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