
Neural Tensor Contractions and the Expressive Power
of Deep Neural Quantum States

Or Sharir
The Hebrew University of Jerusalem

Jerusalem, 9190401, Israel
or.sharir@cs.huji.ac.il

Amnon Shashua
The Hebrew University of Jerusalem

Jerusalem, 9190401, Israel
shashua@cs.huji.ac.il

Giuseppe Carleo
Institute of Physics

École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
giuseppe.carleo@epfl.ch

Abstract

We establish a direct connection between general tensor networks and deep feed-
forward artificial neural networks. The core of our results is the construction of
neural-network layers that efficiently perform tensor contractions, and that use
commonly adopted non-linear activation functions. The resulting deep networks
feature a number of edges that closely matches the contraction complexity of
the tensor networks to be approximated. In the context of many-body quantum
states, this result establishes that neural-network states have strictly the same or
higher expressive power than practically usable variational tensor networks. As
an example, we show that all matrix product states can be efficiently written as
neural-network states with a number of edges polynomial in the bond dimension
and depth logarithmic in the system size. The opposite instead does not hold
true, and our results imply that there exist quantum states that are not efficiently
expressible in terms of matrix product states or PEPS, but that are instead efficiently
expressible with neural network states.

1 Introduction
Many fundamental problems in science can be formulated in terms of finding an explicit representation
of complex high-dimensional functions, ranging from time-dependent vector fields to normalized
probability densities. In recent years, Machine Learning (ML) techniques based on deep learning [19]
have become the leading numerical approach for approximating high-dimensional functions found
in industrial applications. Due to this success, ML methods have also been recognized as a prime
computational tool to attack functional approximation problems in physics [4].

In quantum physics, one of the main theoretical challenges in describing interacting, many-body
systems stems from the complexity of finding explicit representations of many-particle quantum
wave functions. Tensor networks states (TNS) are a well-established general-purpose ansatz for
representing such functions. TNS are intrinsically rooted in the notion of locality in quantum systems
and constitute both a key theoretical language to analyze many-body phenomena as well as a powerful
numerical tool for simulations [42, 34, 29, 41, 10]. Recently, neural-network-based representation
of quantum states, dubbed NQS, have been introduced [6] and subsequently used in a variety of
variational applications. A key theoretical question is how these two alternatives relate to each other,
and whether some families of quantum states are better described in terms of one of them.

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).

Several theoretical properties of NQS have been established to date. General representation theorems
for neural networks [11] guarantee that sufficiently large NQS can describe arbitrary quantum states.
Moreover, exact representations of many-body ground states of local Hamiltonians can be analytically
found in terms of deep Boltzmann Machines [5]. Both representation results however do not bound
the size of the corresponding NQS networks that, in the worst case, can be exponentially large in
the number of physical degrees of freedom [16]. Despite the worst-case exponential bound on NQS,
examples of physically-relevant quantum states that can be efficiently represented are numerous.
These encompass both analytical and numerical results. On the analytical side, for example exact
and compact NQS representations of several correlated topological phases of matter are known
[13, 24, 17, 26]. On the numerical side, suitable learning algorithms have shown competitive
results to find ab-initio approximate description of many physical systems of interest in physics
[18, 9, 37, 33, 23, 39] and chemistry [32, 22, 8].

As mentioned, a well-established paradigm for describing many-body quantum states are TNS.
While generic TNS are widely believed to be general enough to compactly describe most physical
quantum states, however only a restricted subset of them are amenable for numerical calculations.
A determining factor in the applicability of TNS as variational quantum states is played by how
complex it is to use these representations to compute physical quantities, and it is in turn related to the
complexity of contracting TNS. TNS that can be efficiently contracted most notably encompass matrix
product states (MPS) [42], a very powerful representation of low-entangled states in one-dimension.
Higher-dimensional TNS are in general to be contracted only approximately, and rigorous complexity
results have been established. For example, computing expectation values of physical quantities over
planar tensor networks in two dimension, the Projected Entangled Pair States (PEPS) [40], is non
polynomial problem that is known to belong to the #P complexity class [36, 20].

Given the distinctive features of NQS and TNS, several works have studied possible connections
between the two representations. For example, the volume-law entanglement capacity of neural
networks has been established in several works [14, 7, 25]. Also, mappings between the two
classes of states have been realized, including between general fully-connected NQS and MPS with
exponentially large bond-dimension [7]. An approach mapping MPS onto non-standard neural-
networks has also been introduced [31]. Despite the important theoretical progress, however a
direct mapping between generic, efficiently contractible TNS and standard NQS has not been
established to date. This situation for example leaves open the possibility that TNS can offer a general
representational advantage over NQS representations [3, 30], and that there might exist compact,
contractible TNS that cannot be expressed by means of compact NQS.

In this work, we establish a direct mapping between TNS in arbitrary dimension and NQS. By
directly constructing neural-network layers that perform tensor contractions, we show that efficiently
contractible TNS can be constructed in terms of polynomially sized neural-networks. Our result,
in conjunction with previously established results on the entanglement capacity of NQS, then
demonstrates that NQS constitute a very flexible classical representation of quantum states, and that
TNS commonly used in variational applications are strictly a subset of NQS.

2 Preliminaries

We consider in the following a pure quantum system, constituted by N discrete degrees of freedom
s≡(s1, . . . , sN) (e.g. spins, occupation numbers, etc.) such that the wave-function (WF) amplitudes
〈s|Ψ〉 = Ψ(s) fully specify its state. Following the approach introduced in [6], we can represent
log(Ψ(s)) as g1(s) + i · g2(s), where g1 and g2 are two outputs of a feed-forward neural network,
parametrized by a possibly large number of network connections. Given an arbitrary set of quantum
numbers, s, the output value computation of the corresponding NQS can generally1 be described
as two roots of a directed acyclic graph (V,E), where the value of each node v ∈ V is recursively
defined by v(s) = σ

(
bv +

∑
(u,v)∈EWu,vu(s)

)
, where {Wu,v ∈ R}(u,v)∈E and {bv ∈ R}v∈V are

the parameters of the network, and σ : R→ R is some non-linear function known as the activation
function, e.g., ReLU(x) = max(x, 0) or softplus(x) = log(exp(x) + 1) [28, 15]. The root nodes

1This is the classical definition of a neural network. However, some of the models used today slightly deviate
from it, e.g., self-attention modules use bilinear operations in addition to affine ones. While our proof for
section 3 consider only the classical definition, extending it to support many of these variants is trivial.

2

of the network can optionally use the identity instead of a non-linear activation function. The depth
of a neural network is defined as the maximal distance between an input node and the roots.

Alternatively, a state Ψ(s) can also be viewed as a complex tensorAs1,...,sN that is in turn represented
in terms of tensor factorization schemes. Most forms of tensor factorizations are conveniently
described graphically via Tensor Networks (TN), undirected graphs whose nodes are tensors and
edges specify contractions between connected tensors. See App. A for a brief introduction to TN.
In the next section we will present our main results on efficiency of approximating TN by NN.
To properly discuss the complexity of computing a TN, we have to be specific on how a given
TN is computed. First, a contraction order must be selected, i.e., the order by which intermediate
tensors are computed (see App. A for a precise description). Second, we must precisely describe the
computational circuit of a given TN to be able to characterize some structural properties, e.g. depth
and number of neurons, of the NN approximating it. Given a contraction order, the value of Ψ(s) can
alternatively be described in the form of an arithmetic circuit, i.e., a computational graph comprising
product and weighted-sum nodes. Specifically, the value for a product node v ∈ P is given by
v(s) =

∏
(u,v)∈E u(s), and for a weighted-sum node v ∈ S is given by v(s) =

∑
(u,v)∈EWu,v ·u(s),

where {Wu,v ∈ C}(u,v)∈E are the parameters of the circuit, corresponding to the tensor nodes in the
tensor network. Input to the arithmetic circuit is represented by leaf input nodes, where for every si
and possible value k there is an indicator node vi,k = 1 [si = k]. The depth of the circuit is defined
the same as for neural networks. See Fig. 3 for an illustration of a simple TN to AC conversion.

3 Main Results
Here we present our main results. First, that NN can represent any quantum state that is modeled by a
TN with the same efficiency. Second, that there exist states that NN can model efficiently, but require
exponential time for common forms of TN. The main outcome of our work is the representability
diagram in Fig. 1, summarizing the expressive power of NN and TN as variational quantum states.
As discussed, the expressive efficiency of TN is defined with respect to a given contraction scheme
that gives rise to an explicit computation in the form of an AC, composed of product and weighted
sum operations. Hence, the fundamental question is whether AC can be efficiently simulated by NN.

While the relationship between NN and AC has not been well studied, several works did study the
relationship between NN and other polynomial functions [27, 43, 38]. However, the prior methods
do not yield sufficiently good bounds when applied to the problem at hand, resulting in impractical
results. This inefficiency is inherently related to focusing on linear metrics between functions, rather
than multiplicative. Because WF amplitudes are normalized, their absolute values are very small
while their relative values are often orders-of-magnitude apart. See App. B for a longer discussion.

As opposed to prior approaches, we consider the approximation of the log-value of AC, i.e., finding
g such that ‖g − ln f‖∞ < ε – which translate to multiplicative bound in linear space – rather then
‖g − f‖∞ < ε. Working in log-space has the advantage that more reasonable values (not dependent
on N) for ε are sufficient for a meaningful approximation of WF amplitudes. We use the infinity
norm to measure the error of two states because it gives a precise estimate over all inputs. Another
common measure for the closeness of two quantum states is their fidelity, i.e., |〈ψ|φ〉|. However,
notice that closeness of the log-value under the infinity norm also implies closeness under the fidelity.

We assume the magnitude of the AC’s output is strictly positive for all inputs and greater than some
fix value, fmin, such that the log-value is well-define. fmin can be extremely small, on the order of
10−10

10

, without having a meaningful impact on our results and so it bares little effect in practice.
Furthermore, to simplify the presentation of our proofs, we assume the absolute value of both real
and imaginary parts to be strictly positive, though this last assumption could be relaxed. Under this
settings, we proved that NN can simulate AC to almost arbitrary precision and with little overhead:

Theorem 1 Let f : X → C be a complex-valued function given by an arithmetic cir-
cuit comprising n nodes and m edges, of depth l, and using complex parameters. Assume
0 < fmin ≡ infx∈X min{|re(f(x))| , |im(f(x))|}, and define Wmax ≡ max{1,maxe∈EWe}.
Then, there exist a function g : X → R2 described by a neural network comprising
O (n+m+ c) nodes, O (m+ c) edges, of depth O (l log(m) + c), and using softplus activa-
tion functions and real parameters such that maxx∈X |g1(x) + i · g2(x)− log(f(x))| < ε, where

c(ε,m,Wmax, fmin)≡O
(

ln2
(
m
ε ln

(
Wmax

fmin

))
+ ln

(
1
ε

)√
1
ε

)
.

3

Quantum
States

Neural

MPS

PEPS*

Gapped
 1D

Quantum States

Figure 1: Expressive power of classically tractable variational quantum states. Different classes
of quantum states describing a qudit system with N degrees of freedom and comprising poly(N)
variational parameters are compared. Matrix Product States (MPS) can efficiently represent gapped
ground-states of one-dimensional systems. PEPS* denotes here Projected Entangled Pair States of
bond dimension χ that are exactly or approximately contracted in poly(N,χ) time on a classical
computer. Neural Quantum States (NQS) comprise all polynomially tractable TN, thus include MPS,
and PEPS∗, while also representing additional states with volume law entanglement that are not
efficiently described by such planar TN.

The proof of Theorem 1, which is given in full in app. C, is based on two steps. First, we show that AC
with non-negative parameters and inputs can be exactly reconstructed with NN with real parameters
and softplus activation functions. In this simple case, for any intermediate values x1, x2 ≥ 0, we can
set oi = log(xi)(where 0 is mapped to the right-side limit of −∞), and then multiplication becomes
summation, i.e., log(x1 · x2) = o1 + o2. For summation, softplus activations arise naturally:

log(x1+x2) = log(eo1+eo2) = o1+ log
(
1+eo2−o1

)
= o1+ softplus(o2−o1). (1)

For log-space summation of n inputs, we can decompose it as a binary tree, which gives the log(m)
correction to the depth of the network. Second, we reduce the complex case to the non-negative
case plus a finite number of smooth operations, which can be approximated efficiently by employing
various techniques. Since only a finite number of operations requires approximation, it results in the
additive term c(ε,m,Wmax, fmin), which is merely logarithmic in the number of edges of the AC, and
double logarithmic with respect to the magnitudes of the weights and the WF amplitudes. These weak
dependencies of the target AC result in practically arbitrary precision. The immediate implication of
Theorem 1 is that NQS can simulate TNS at least as efficiently as their TN representation:

Corollary 1 For any tensor network quantum state with a contraction scheme of run-time k, and at
most b bits of precision in computations and parameters, there exists a neural network that approxi-

mate it with a maximal error of ε and of run-time (number of edges) O
(
k + ln2

(
kb
ε

)
+ ln

(
1
ε

)√
1
ε

)
.

For the specific case of MPS, Cor. 1 translates to the following:

Corollary 2 For any MPS over N sites, each of local dimension d, with bond dimension χ, and fixed
b bits of precision, there exists a neural network of depth l consisting of m edges that approximates
its contraction algorithm up to ε, where l and m depend on the contraction scheme:

1. Sequential: l = Õ
(
N +

√
1/ε
)

and m = Õ
(
Ndχ2 +

√
1/ε
)

.

2. Parallel: Õ(lnN +
√

1/ε) and m = Õ
(
N(d+ χ)χ2 +

√
1/ε
)

.

where Õ denotes big-O while ignoring logarithmic factors.

In turn, this result also allows to use previously established rigorous results on MPS to directly
quantify the expressive power of NQS on special classes of quantum systems. For example, Hastings
famously established an area-law entanglement for the gapped ground state of one-dimensional
systems [21] that directly translates into an efficient approximation by MPS [21, 2, 35, 12]. Our
result in 2, in connection with the bound established in [21] implies:

Corollary 3 Consider a 1D Hamiltonian H defined on N qudits of finite local dimension d, and with
a non-vanishing spectral gap ∆. The ground state of a H can be written as a deep neural network of
depth l = O(lnN+

√
1/ε) and m=O (poly(N, 1/ε)) edges.

Though we have established a strictly inclusive relationship, we show that the reverse is not true, that
is, there are NQS that cannot be efficiently reproduced by generally used variational TNS.:

4

Corollary 4 There exist quantum states that can be represented by NN with parameters and runtime
polynomial in the number of sites, that MPS, MERA, and PEPS tensor networks cannot represent
efficiently unless they use exponential number of parameters.

The proof is based a prior work that used convolutional AC as indirect analogs to convolutional NN,
and showed that convolutional AC can represent some volume-law states, which MPS, PEPS and
MERA cannot represent efficiently. Using Theorem 1 we can translate their result to real-world NN.
See Fig. 4 in App. D for an illustration. Cor. 4 leaves open the possibility of novel geometries for
TNS that could be efficient. Nevertheless, using Theorem 1, even these hypothetical TNS could be
represented by NQS.

4 Discussion
In this work we have introduced a general mapping between tensor networks and deep artificial neural
networks. This mapping allows to directly connect two of the most important classes of parametric
representations of high dimensional functions, and allows to establish a representation diagram of
modern variational many-body variational quantum states. Moreover, our results could be extended
to support approximated contraction schemes as well (See App. E). We expect that our mapping
will be especially useful to establish further rigorous representation results on neural-network based
quantum states, using the well-developed theory of tensor-network representations. On the other
hand, the kind of neural-network architectures and connectivity patterns resulting from our mapping
might also inspire new practical applications inspired by successful tensor-network ideas. Along the
same lines, our mapping can also help clarify in what circumstances gradient-based optimization
strategies, ubiquitous in machine learning, are to be preferred over successful alternated optimization
strategies instead commonly adopted for tensor networks.

Acknowledgments and Disclosure of Funding
This research was supported by the ERC (European Research Council) and the ISF (Israel Science
Foundation).

References
[1] M. Andrecut. Parallel gpu implementation of iterative pca algorithms. Journal of Computational

Biology, 16(11):1593–1599, 2009. PMID: 19772385.

[2] Itai Arad, Alexei Kitaev, Zeph Landau, and Umesh Vazirani. An area law and sub-exponential
algorithm for 1D systems. arXiv:1301.1162 [cond-mat, physics:quant-ph], January 2013. arXiv:
1301.1162.

[3] Artem Borin and Dmitry A. Abanin. Approximating power of machine-learning ansatz for quan-
tum many-body states. Physical Review B, 101(19):195141, May 2020. Publisher: American
Physical Society.

[4] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,
Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. Rev.
Mod. Phys., 91:045002, Dec 2019.

[5] Giuseppe Carleo, Yusuke Nomura, and Masatoshi Imada. Constructing exact representations of
quantum many-body systems with deep neural networks. Nature Communications, 9(1):5322,
2018.

[6] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

[7] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. Equivalence of restricted
boltzmann machines and tensor network states. Phys. Rev. B, 97:085104, Feb 2018.

[8] Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. Fermionic neural-network states for
ab-initio electronic structure. Nature Communications, 11(1):2368, May 2020. Number: 1
Publisher: Nature Publishing Group.

5

[9] Kenny Choo, Titus Neupert, and Giuseppe Carleo. Two-dimensional frustrated
${J}_{1}\text{\ensuremath{-}}{J}_{2}$ model studied with neural network quantum states.
Physical Review B, 100(12):125124, 2019.

[10] Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete. Matrix Product States
and Projected Entangled Pair States: Concepts, Symmetries, and Theorems. arXiv:2011.12127
[cond-mat, physics:hep-th, physics:quant-ph], November 2020. arXiv: 2011.12127.

[11] G Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, 1989.

[12] Alexander M. Dalzell and Fernando G. S. L. Brandão. Locally accurate MPS approximations for
ground states of one-dimensional gapped local Hamiltonians. Quantum, 3:187, September 2019.
Publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.

[13] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Machine learning topological states. Physical
Review B, 96(19):195145, November 2017.

[14] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum entanglement in neural network
states. Phys. Rev. X, 7:021021, May 2017.

[15] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorpo-
rating second-order functional knowledge for better option pricing. In NIPS, pages 472–478,
2000.

[16] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states with deep
neural networks. Nature communications, 8(1):662, 2017.

[17] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio Cirac. Neural-
Network Quantum States, String-Bond States, and Chiral Topological States. Physical Review
X, 8(1):011006, January 2018.

[18] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio Cirac. Neural-
network quantum states, string-bond states, and chiral topological states. Phys. Rev. X, 8:011006,
Jan 2018.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
Cambridge, Massachusetts, November 2016.

[20] Jonas Haferkamp, Dominik Hangleiter, Jens Eisert, and Marek Gluza. Contracting projected
entangled pair states is average-case hard. Physical Review Research, 2(1):013010, January
2020. Publisher: American Physical Society.

[21] M. B. Hastings. An area law for one-dimensional quantum systems. Journal of Statistical Me-
chanics: Theory and Experiment, 2007(08):P08024, August 2007. Publisher: IOP Publishing.

[22] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
Schrödinger equation. Nature Chemistry, 12(10):891–897, October 2020. Number: 10 Publisher:
Nature Publishing Group.

[23] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Car-
rasquilla. Recurrent neural network wave functions. Physical Review Research, 2(2):023358,
June 2020. Publisher: American Physical Society.

[24] Raphael Kaubruegger, Lorenzo Pastori, and Jan Carl Budich. Chiral topological phases from
artificial neural networks. Physical Review B, 97(19):195136, May 2018.

[25] Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua. Quantum entanglement in deep
learning architectures. Phys. Rev. Lett., 122:065301, Feb 2019.

[26] Sirui Lu, Xun Gao, and L.-M. Duan. Efficient representation of topologically ordered states
with restricted Boltzmann machines. Physical Review B, 99(15):155136, April 2019.

6

[27] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and why are deep networks better
than shallow ones? Proceedings of the AAAI Conference on Artificial Intelligence, 31(1), Feb.
2017.

[28] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, pages 807–814, 2010.

[29] Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538–
550, September 2019. Number: 9 Publisher: Nature Publishing Group.

[30] Chae-Yeun Park and Michael J. Kastoryano. Are neural quantum states good at solving non-
stoquastic spin Hamiltonians? arXiv:2012.08889 [cond-mat, physics:quant-ph], December
2020. arXiv: 2012.08889.

[31] Lorenzo Pastori, Raphael Kaubruegger, and Jan Carl Budich. Generalized transfer matrix states
from artificial neural networks. Physical Review B, 99(16):165123, April 2019. Publisher:
American Physical Society.

[32] David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C. Foulkes. Ab initio
solution of the many-electron Schr\"odinger equation with deep neural networks. Physical
Review Research, 2(3):033429, September 2020. Publisher: American Physical Society.

[33] Markus Schmitt and Markus Heyl. Quantum Many-Body Dynamics in Two Dimensions
with Artificial Neural Networks. Physical Review Letters, 125(10):100503, September 2020.
Publisher: American Physical Society.

[34] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326(1):96–192, 2011.

[35] Norbert Schuch and Frank Verstraete. Matrix product state approximations for infinite systems.
arXiv:1711.06559 [cond-mat, physics:quant-ph], November 2017. arXiv: 1711.06559.

[36] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and J. Ignacio Cirac. Computational
Complexity of Projected Entangled Pair States. Physical Review Letters, 98(14):140506, April
2007. Publisher: American Physical Society.

[37] Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. Deep Autoregres-
sive Models for the Efficient Variational Simulation of Many-Body Quantum Systems. Physical
Review Letters, 124(2):020503, 2020. Publisher: American Physical Society.

[38] Matus Telgarsky. Neural networks and rational functions. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 3387–3393, International Convention
Centre, Sydney, Australia, Aug 2017. PMLR.

[39] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and
Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics, 14(5):447, May
2018.

[40] Frank Verstraete and J Ignacio Cirac. Renormalization algorithms for quantum-many body
systems in two and higher dimensions. arXiv preprint cond-mat/0407066, 2004.

[41] Frank Verstraete, Valentin Murg, and J Ignacio Cirac. Matrix product states, projected entangled
pair states, and variational renormalization group methods for quantum spin systems. Advances
in Physics, 57(2):143–224, 2008.

[42] Steven R White. Density matrix formulation for quantum renormalization groups. Physical
review letters, 69(19):2863, 1992.

[43] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103 – 114, 2017.

7

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We do our best to specify what
can and cannot be deduced from our theoretical claims.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The
paper deals purely with the theoretical question of the representational power of two
computational models used for approximating quantum states, and so have no societal
impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions

are included either as part of claims or in preceding paragraphs.
(b) Did you include complete proofs of all theoretical results? [Yes] In appendices.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Introduction to Tensor Networks
Here we give a brief introduction to the basic concepts of tensor networks (TN). See Fig. 2 for the
accompanying illustrations. TN is a graphical notation for describing common tensor operations
and factorization schemes. Nodes in the graph represent tensors, where edges correspond to indices,
ranging from vectors (top left) and matrices (top middle) to arbitrary high-dimensional tensors (top
right). Connected nodes represent tensor contractions, i.e., a summation over matching indices
of the products of all tensor nodes in the graph, e.g., matrix-vector multiplication (bottom left).
Tensor networks are useful for describing tensor factorizations, e.g., SVD factorization of matrices
(bottom right). The most commonly used forms of TN are Matrix Product States (MPS), Tree
Tensor Networks (TTN), Projected Entangled Pair States (PEPS), and Multi-scale Entanglement
Renormalization Ansatz (MERA).

8

Figure 2: Illustrations of basic elements and operations of tensor networks, as well as common tensor
networks types.

Figure 3: (left) Sequential contraction scheme for Matrix Product States: At step 1, we map indices
d1, . . . , d8 to their corresponding matrices (or vectors at boundaries), a O(dχ2)-time operation. In
each of the following steps, we contract a boundary vector with its neighboring matrix node, a
O(χ2)-time operation, amounting to a total of O(Ndχ2) for the entire contraction, performed in
N steps. (middle) Parallel3contraction scheme for Matrix Product States: Following step 1 as in
the sequential contraction, we contract pairs of neighboring nodes in parallel, each an O(χ3)-time
operation, amounting to a total of O(N(d+ χ)χ2) for the entire contraction, performed in log2(N)
steps. (right) Illustration of a simple contraction scheme, in this case matrix-vector multiplication, as
an arithmetic circuit.

The complexity of contracting a TN exactly is dependent on its contraction order. While finding the
optimal contraction order for an arbitrary TN is known to be NP-complete, for many common TN
forms, e.g. Matrix Product States, efficient algorithms exist. Two such contraction schemes are the
sequential and parallel contractions that are depicted in Fig. 3.

B Related Works on Approximating Polynomial Functions with Neural
Networks

When examining the ability of NN to approximate polynomials, one can notice that while the weighted
sum operation is straitforward for NN, the product operation is not trivially simulated by NN and
has been the topic of several works [27, 43, 38] in the context of the approximation power of NN.
Nevertheless, we could not base our approximation scheme on these claims without attaining worse
bounds. The most recent result [43] on approximating products with NN demonstrates a construction
with a width and a depth at most O(log(M/ε)) such that maxx,y∈[−M,M] |NN(x, y)− x · y| < ε.
While this impressive rate of approximation is sufficient for many purposes, it is less suitable for
quantum states representation.

Consider for example an arbitrary N -qubit system, then due to normalization at least half of its wave-
function amplitudes are, in modulus, less than 2−N/2, which entails ε < 2−N/2 for a meaningful
approximation. Thus, using this construction would require at least poly(N) width and depth for
every product operation, resulting in a multiplicative polynomial penalty to the runtime. In practice,
this polynomial penalty would have major ramifications. To put this in perspective, a 10×10 two-

3When parallelizing across sites, the effective run-time in practice depends mostly on the number of steps,
i.e., log2N , and χ2 rather than χ3 because each matrix multiplication itself can be parallelized across the
coordinates of the output matrix, resulting in O(χ2 logN).

9

dimensional system would require at least hundreds of NN layers regardless of the complexity of the
TNS.

C Proof of Theorem 1

In this section we describe the proof of Theorem 1. We begin by providing a sketch of the proof,
followed by the full proof. As mentioned in the main text, we prove the theorem in two steps. First,
prove the theorem for the case of non-negative AC. Second, reduce the general complex case to the
non-negative case.

C.1 Proof Sketch

The proof is based on two steps. First, we show that AC with non-negative parameters and inputs
can be exactly reconstructed with NN with real parameters and softplus activation functions. Let
o1 = log(x1), o2 = log(x2) for x1, x2 ≥ 0. Then, working in log-space, multiplication becomes
summation, i.e., log(x1 · x2) = o1 + o2, making input-input multiplication trivial for NN, unlike
before. For every input-parameter multiplication, i.e., a sum-node edge in the AC graph, we add
an auxiliary neuron with a single input. The AC’s parameters are stored in the bias terms of these
auxiliary neurons, adding m nodes to the NN but with negligible effect on runtime (number of edges).
For summation, softplus activations arise naturally:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 − o1))

= o1 + softplus(o2 − o1). (2)

For log-space summation of n inputs, we can decompose it as a binary tree, which gives the log(m)
correction to the depth of the network. With both log-space NN analogs in place, a non-negative AC
can be exactly reproduce with same asymptotic time complexity.

For the second step, we reduce the general complex case to the non-negative case. A real number
x ∈ R can be represented with a redundant representation of two non-negative numbers x+, x− ≥ 0
by x = x+ − x−. Addition and multiplication can be applied directly on this representation:

x+ y = (x+ + y+)− (x− + y−)

x · y = (x+ · y+ + x− · y−)− (x− · y+ + x+ · y−)

Thus, a real AC can be expressed as the difference of two non-negative AC, and a complex AC by
representing the real and imaginary parts in this fashion. Finally, to compute the logarithm of this
redundant complex representation, i.e., the log-magnitude and phase, we employ various univariate
approximation schemes. Since these two operations are smooth and used only at the end of the
network, it results in the additive term c(ε,m,Wmax, fmin), which is merely logarithmic in the
number of edges of the AC, and double logarithmic with respect to the magnitudes of the weights and
the WF amplitudes. Due to these weak dependencies of the target AC, it allows for an approximation
with a practically arbitrary precision.

C.2 Non-negative Case

For the first step, we assume an AC with non-negative inputs and parameters. The inputs and AC
parameters are transformed to their log-value, where we extend the real-line with ±∞ and represent
log(0) = −∞. For most practical considerations, −∞ could be substituted with a large but finite
negative constant.

In our NN construction, we freely use the identity instead of a softplus activation function when it
is more convenient. We can do so because the identity operation can be simulated with arbitrary

10

precision using the weighted sum of just two neurons with softplus activations:

x = max(x, 0)−max(−x, 0),

max(x, 0) = lim
δ→∞

softplus(δx)

δ
= lim
δ→∞

1

δ
ln(1 + exp(δx)),

= lim
δ→∞

1
δ

→0︷ ︸︸ ︷
ln(1 + exp(δx)) x ≤ 0

x+ 1
δ

→0︷ ︸︸ ︷
ln(1 + exp(−δx)) x > 0

,

⇒ x = lim
δ→∞

softplus(δx)− softplus(−δx)

δ
.

The above workaround can at most double the number of neurons and edges in our construction, and
thus does not affect our asymptotic bounds.

Every product node with k in-edges in the AC is replaced by a neuron with k in-edges, whose weights
are set to 1 and bias to 0, representing multiplication in log-space, i.e., log(

∏k
i=1 xi) =

∑k
i=1 oi,

where {oi = exp(xi)}ki=1 are the log-values of the connected nodes.

Every weighted-sum node with k in-edges and parameterized by w ∈ Rk≥0 is replaced by the
following NN sub-graph of O(k) nodes and O(k) edges. Every input-parameter multiplication term,
i.e., wi · xi, is represented by a single neuron with a single in-edge with weights set to 0 and bias set
to wi, resulting in pi ≡ log(wi · xi) = wi + oi. Without loosing our generality, assume k = 2t for
some t ∈ N, and so we can decompose

∑k
i=1 pi as a complete binary tree of depth t, 2k − 1 nodes,

and 2k − 1 in-edges in total. Each node in the tree represent a binary addition, which can be realized
with 2 neurons, one with softplus activation and one with identity:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 − o1))

= o1 + softplus(o2 − o1).

Applying the above transformations to a non-negative AC with n nodes, m edges, and depth l results
in a NN of depth l log(m) with O(n+m) nodes and O(m) edges, concluding the proof of the first
step.

C.3 Complex Case
For the second step, we begin initially by transforming a complex AC into four distinct non-negative
AC graphs, representing the following four “parts” of a complex number: positive real, negative real,
positive imaginary, and negative imaginary.

Every real number x ∈ R can be represented with the redundant form x = x+ − x−, where
x+, x− ∈ R≥0. Multiplication and addition can be performed directly within that representation
using the following identities:

x+ y = [x+ + y+]− [x− − y−],

x · y = [x+ · y+ + x− · y−]− [x+ · y− + x− · y+].

Similarly, a complex number z ∈ C can be represented with four components, z = zre,+ − zre,− +
i · (zim,+ − zim,−), where zre,+, zre,−, zim,+, zim,− ∈ R≥0.

Given a complex AC with m edges, n nodes, and of depth l, we can use the above redundant
representation for its inputs, parameters, and intermediate computations. Propagating the opera-
tions with the above identities through the complex AC graph, results in four non-negative AC,
each with O(m) edges, O(n) nodes, and of depth O(l), denoting each component of the com-
plex AC’s output, i.e., AC(z) = AC(ẑ)re,+ −AC(ẑ)re,− + i · (AC(ẑ)im,+ −AC(ẑ)im,−), where
ẑ = (zre,+, zre,−, zim,+, zim,−). The logarithm of each of these non-negative AC can be represented
with a NN according to the first step.

What remains is to convert the redundant representation to a log-polar form, i.e.,
log(z) = log(|z|) + i · arg(z), per the desired output described in Theorem 1. We employ various ap-
proximation techniques to simulate this operation. In the following we denote the components of the

11

redundant representation and its log-value by ore,+ = ln zre,+, ore,− = ln zre,−, oim,+ = ln zim,+,
and oim,− = ln zim,−.

C.3.1 Estimating log |z|
In this sub-section, we describe the estimation of log(|z|) by softplus networks.

log(|z|) can be expressed with respect to the redundant representation’s components as:

log |z| = ln

(√
|zre|2 + |zim|2

)
,

= ln |zre|+
1

2
ln (1 + exp (2 ln |zim| − 2 ln |zre|)) ,

= ln |zre|+
1

2
softplus(2 ln |zim| − 2 ln |zre|), (3)

where zre = zre,+ − zre,− and zim = zim,+ − zim,−.

In the rest of this sub-section we focus on the approximation of ln |zre|, where the same methods
can be applied for ln |zim|. We begin by defining ore,max = max(ore,+, ore,−) and ore,min =
min(ore,+, ore,−), and similarly for the imaginary part. Recall that max(x, y) = y + max(x− y, 0)
and min(x, y) = y −max(y − x, 0), and so both can be approximated to arbitrary precision with
softplus networks. With that, we can write:

ln |zre| = ln (max(zre,+, zre,−)−min(zre,+, zre,−))

= ln (exp(ore,max)− exp(ore,min)) ,

= ore,min + ln (exp(ore,max − ore,min)− 1) ,

= ore,min + softplus−1(ore,max − ore,min),

where softplus−1 is the inverse of the softplus function. To approximate the inverse, we employ two
strategies: (i) for large values, softplus−1(x) ≈ x to a high precision, and (ii) for smaller values, we
estimate the inverse using root-finding algorithms, and specifically, the bisection method.

Let ε > 0, and x = ore,max − ore,min. For x > xlarge ≡ − ln(1 − exp(−ε)) it holds that∣∣x− softplus−1(x)
∣∣ < ε. For realizing the bisection method, we first set the initial search range for

y∗ = softplus−1(x). y∗max can be set to xlarge because softplus−1(x) ≤ x. For y∗min we can bound
the minimal value of x as follows

x = ore,max − ore,min = ln

(
zre,max

zre,min

)
= ln

(|zre|+ zre,min

zre,min

)
= ln

(|zre|
zre,min

+ 1

)
≥ ln

(
fmin

zre,min
+ 1

)
.

Next, we upper bound the value of zre,min by finding an upper bound on the value of a generic
non-negative AC with m edges. First, we replace every non-zero weight with the maximal weight
in the graph. Then, we can replace every weighted sum with v(s) =

∑
(u,v)∈EWu,vu(s) ≤

|{(u, v) ∈ E}| (maxe∈EWe)
(
max(u,v)∈E u(s)

)
. Finally, we can prove by induction along the

topological order of the graph that the output of every sub-graph of m′ edges is upper bounded
by
(
m′max(v,u)∈E |Wv,u|

)m′
. Thereby, we can set xmin ≡ ln

(
fmin

(mWmax)
m + 1

)
, and thus y∗min ≡

ln
(

fmin

(mWmax)
m

)
.

To simulate the bisection algorithm, we define the approximate Heaviside function by Hδ(x) ≡
max(x2δ + 1

2 , 0)−max(x2δ − 1
2 , 0) that satisfies H = limδ→0Hδ, and use the following recursive

update rule for T ≡ dlog2(y
∗
max−y

∗
min/ε)e steps:

mi ≡
yi−1,min + yi−1,max

2
,

ci ≡ Hδ(softplus(m)− x)

yi,min ≡ ciyi−1,min + (1− ci)mi,

yi,max ≡ cimi + (1− ci)yi−1,max,

12

where the multiplications are approximated according to (author?) [43], which requires an additional
O(ln(max{|y∗max|,|y

∗
min|}/ε̃)) edges and depth per multiplication, where ε̃ ≡ ε/8T . The usual bisection

method relies on the exact Heaviside function, however, if δ is chosen to be small enough, then
it too satisfies the range halving property, i.e., it holds that yi,max − yi,min =

yi−1,max−yi−1,min

2

and softplus−1(x) ∈ [yi,min, yi,max]. The latter holds because either |softplus(m)− x| ≥ δ, a
regime at which Hε = H , or |softplus(m)− x| < δ, which due to the lipschitzness of softplus−1 it
holds that

∣∣m− softplus−1(x)
∣∣ ≤ L |softplus(m)− x| ≤ Lδ. Thus, for δ < ε/2L, the claim holds.

Similarly, we can use the approximated Heaviside function once more to combine both regimes of x,
by outputting Hδ(x− xlarge)x+ (1−Hδ(x− xlarge))mT .

In total, to approximate log |z| up to ε, requires O
(

ln2
(
m
ε ln

(
Wmax

fmin

)))
nodes, edges, and depth

on top of the base NN used to approximate the four non-negative AC.

C.3.2 Estimating arg z

In this sub-section, we describe the estimation of arg z by softplus networks, building on the
approximations of ln |zre| and ln |zim| described in the previous sub-section.

arg z can be computed according to the following formula:

arg z = atan2(zim, zre)

=

arctan
(
zim
zre

)
zre > 0

arctan
(
zim
zre

)
+ π zre < 0 ∧ zim ≥ 0

arctan
(
zim
zre

)
− π zre < 0 ∧ zim < 0

+π
2 zre = 0 ∧ zim > 0

−π2 zre = 0 ∧ zim < 0

undefined zre = 0 ∧ zim = 0

.

Since we assumed |zim| , |zre| > 0, then only the first 3 cases are relevant. Therefore, we can write
the formula using the following compact form:

arg z = arctan

(
zim
zre

)
+H(−zre) sgn(zim)π,

where H is the Heaviside function. Furthermore, we can rewrite in terms of ln |zim| and ln |zre|:

arg z = sgn(zrezim) arctan

(∣∣∣∣zimzre
∣∣∣∣)+H(-zre) sgn(zim)π,

= sgn(zrezim) arctan exp (ln |zim| − ln |zre|)
+H(-zre) sgn(zim)π.

The signs of zre can be computed as sgn(zre) = H(ore,+− ore,−)−H(ore,−− ore,+), which can be
approximated with softplus networks using the approximated Heaviside function,Hδ (defined in previ-
ous sub-section). Since we proved in the previous section that |ore,+ − ore,−| ≥ ln

(
fmin

(mWmax)
m + 1

)
then using 0 < δ < ln

(
fmin

(mWmax)
m + 1

)
the approximated Heaviside function will be equivalent to

the exact Heaviside in the regime of our network. Similarly, H(−zre) = 1−sgn(zre)
2 , and so could

be computed exactly as well. The multiplications between these terms and arctan exp(.) can be
approximated via (author?) [43], where in this case the since the values are all bounded by ±2, then
we only need O(ln(1/ε)) nodes, edges and depth for this sub-network.

To approximate t(x) ≡ arctan exp(x), we start with a piecewise-linear approximation, which can
then be approximated to arbitrarily precision with softplus networks. Since t(x) = π

2 − t(−x), then
it is enough to show an approximation for x ≤ 0, and the x > 0 case can be constructed with the
above identity. For x ≤ 0, t is a 1/2-smooth convex function because its derivative, 1

exp(x)+exp(−x) ,
is strictly increasing and bounded by 1/2 in this range. Hence, for any x, y < 0 it holds that
|t(x) + t′(x)(y − x)− t(y)| ≤ 1

4 |y − x|
2.

13

For any xmin < 0 and n ∈ N, define the following piecewise linear function. Use n+ 1 uniformly
spaced anchor points in the [xmin, 0] range, where the first and last anchors are the boundaries.
For every anchor point x, denote the first-order linear approximation at this point by lx(y) =
t(x) + t′(x)(y − x). Since t is convex in this range, then lx(y) ≤ t(y), and so for every two
neighboring anchor points x1 < x2 the intersection point of lx1

and lx2
must lie in the range (x1, x2).

Define the segments of the piecewise linear function according to the intersection points and the
matching linear approximations lx of the anchor point within each segment. For any two neighboring
anchors x1 < x2 and x1 ≤ y ≤ x2, this function can be denoted by max{lx1

(y), lx2
(y)}. Using the

last inequality, we can bound the error in the [xmin, 0] range with 1
4

(
x2−x1

2

)2 ≤ x2
min

16n2 . For x < xmin,
we extend the segment of the anchor xmin until its intersection with the x-axis, followed by an open
segment for the zero function. Since arctanx ≤ x for any x > 0, then t(x) ≤ exp(x), and so
for xmin = − ln(1/ε) it holds that ∀x ≤ xmin, |t(x)| < ε. Thus, a piecewise linear function with

O
(

ln(1/ε)
√

1
ε

)
segments can approximate t(x) up to ε maximal difference. Finally, a piecewise

linear function with k segments can be realized with a ReLU network of O(k) nodes and edges, and
of constant depth.

D Illustration of a Volume-Law Neural-Network Quantum State

Conv 1⨉1 Conv 1⨉2

Conv 1⨉1

Conv 2⨉1

Conv 1⨉1

Input Spins

Pool

ln (""#· · ·")
<latexit sha1_base64="KTObYVtrKd/DrBstc0aBkobep8k=">AAACKXicbVDLSgMxFM3UV62vUZdugkWomzIjgi6LblxWsA/oDCWTybShmWRIMpYy9Hfc+CtuFBR164+YtoP04YHAyTn33uSeIGFUacf5sgpr6xubW8Xt0s7u3v6BfXjUVCKVmDSwYEK2A6QIo5w0NNWMtBNJUBww0goGtxO/9UikooI/6FFC/Bj1OI0oRtpIXbvmMQ69uqKVzEsTJKUYjuECDcWQ/11wKLSaLzjv2mWn6kwBV4mbkzLIUe/ab2YkTmPCNWZIqY7rJNrPkNQUMzIueakiCcID1CMdQzmKifKz6aZjeGaUEEZCmsM1nKrzHRmKlRrFgamMke6rZW8i/ud1Uh1d+xnlSaoJx7OHopRBLeAkNhhSSbBmI0MQltT8FeI+kghrE27JhOAur7xKmhdV16m695fl2k0eRxGcgFNQAS64AjVwB+qgATB4Ai/gHXxYz9ar9Wl9z0oLVt5zDBZg/fwCl0Sorg==</latexit><latexit sha1_base64="KTObYVtrKd/DrBstc0aBkobep8k=">AAACKXicbVDLSgMxFM3UV62vUZdugkWomzIjgi6LblxWsA/oDCWTybShmWRIMpYy9Hfc+CtuFBR164+YtoP04YHAyTn33uSeIGFUacf5sgpr6xubW8Xt0s7u3v6BfXjUVCKVmDSwYEK2A6QIo5w0NNWMtBNJUBww0goGtxO/9UikooI/6FFC/Bj1OI0oRtpIXbvmMQ69uqKVzEsTJKUYjuECDcWQ/11wKLSaLzjv2mWn6kwBV4mbkzLIUe/ab2YkTmPCNWZIqY7rJNrPkNQUMzIueakiCcID1CMdQzmKifKz6aZjeGaUEEZCmsM1nKrzHRmKlRrFgamMke6rZW8i/ud1Uh1d+xnlSaoJx7OHopRBLeAkNhhSSbBmI0MQltT8FeI+kghrE27JhOAur7xKmhdV16m695fl2k0eRxGcgFNQAS64AjVwB+qgATB4Ai/gHXxYz9ar9Wl9z0oLVt5zDBZg/fwCl0Sorg==</latexit><latexit sha1_base64="KTObYVtrKd/DrBstc0aBkobep8k=">AAACKXicbVDLSgMxFM3UV62vUZdugkWomzIjgi6LblxWsA/oDCWTybShmWRIMpYy9Hfc+CtuFBR164+YtoP04YHAyTn33uSeIGFUacf5sgpr6xubW8Xt0s7u3v6BfXjUVCKVmDSwYEK2A6QIo5w0NNWMtBNJUBww0goGtxO/9UikooI/6FFC/Bj1OI0oRtpIXbvmMQ69uqKVzEsTJKUYjuECDcWQ/11wKLSaLzjv2mWn6kwBV4mbkzLIUe/ab2YkTmPCNWZIqY7rJNrPkNQUMzIueakiCcID1CMdQzmKifKz6aZjeGaUEEZCmsM1nKrzHRmKlRrFgamMke6rZW8i/ud1Uh1d+xnlSaoJx7OHopRBLeAkNhhSSbBmI0MQltT8FeI+kghrE27JhOAur7xKmhdV16m695fl2k0eRxGcgFNQAS64AjVwB+qgATB4Ai/gHXxYz9ar9Wl9z0oLVt5zDBZg/fwCl0Sorg==</latexit><latexit sha1_base64="KTObYVtrKd/DrBstc0aBkobep8k=">AAACKXicbVDLSgMxFM3UV62vUZdugkWomzIjgi6LblxWsA/oDCWTybShmWRIMpYy9Hfc+CtuFBR164+YtoP04YHAyTn33uSeIGFUacf5sgpr6xubW8Xt0s7u3v6BfXjUVCKVmDSwYEK2A6QIo5w0NNWMtBNJUBww0goGtxO/9UikooI/6FFC/Bj1OI0oRtpIXbvmMQ69uqKVzEsTJKUYjuECDcWQ/11wKLSaLzjv2mWn6kwBV4mbkzLIUe/ab2YkTmPCNWZIqY7rJNrPkNQUMzIueakiCcID1CMdQzmKifKz6aZjeGaUEEZCmsM1nKrzHRmKlRrFgamMke6rZW8i/ud1Uh1d+xnlSaoJx7OHopRBLeAkNhhSSbBmI0MQltT8FeI+kghrE27JhOAur7xKmhdV16m695fl2k0eRxGcgFNQAS64AjVwB+qgATB4Ai/gHXxYz9ar9Wl9z0oLVt5zDBZg/fwCl0Sorg==</latexit>

Dense

Conv 1⨉1

⨉ L

Conv 1⨉1

Conv 1⨉1

Conv 1⨉1 Conv 1⨉1

Conv 1⨉1

Conv 1⨉1

Figure 4: An illustration of a convolutional neural network (ConvNet), according to Cor. 4, that is
capable of representing two-dimensional quantum spin (d = 2) states with volume-law entanglement
entropy that a PEPS model cannot represent unless it employs exponential (in number of sites)
parameters. The ConvNet is made up of a sequence of L blocks. Each block has two spatial (either
2×1 or 1×2 window size) convolutional layers, eight (in general, 2 log2(2d)) local convolutional
layers (1×1 windows) and residual connections between them. The residual connections are a direct
result of the o1 + softplus(o2 − o1) construction found in Eq. 2. There are no pooling layers except
in the next to last layer, in which a global average pooling operation is applied. The network ends
with a dense layer reducing the dimension to a scalar that represents the log-amplitude of the quantum
state. If a system employs a q×q grid (N = q2), then a ConvNet with L = q/2 blocks can be used to
represent some volume-law states, which PEPS cannot represent efficiently. For one-dimensional
systems, a network can be similarly constructed, demonstrating separation from both MPS and MERA
as well. The same construction can also be extended to higher dimensions and for d > 2.

E Proof Sketch for Extending Results to Approximated Contraction Schemes
Some TN that cannot be efficiently contracted exactly can still be used with approximate. One of the
most notable example for such a case are PEPS. When examining these approximated contraction
algorithms, they typically mostly involve iterative application of linear operations, except for employ-
ing a Singular-Value Decomposition operation. Hence, if we could simulate the SVD operation with
a NN, then we could trace the operations of the approximated contraction scheme, use Theorem 1 for
simulating the linear operations and then approximate the remaining SVD operations.

To simulate SVD, we can rely on one of the iterative approximation algorithms [1] used to compute it
in practice. This algorithm involves iteratively employing matrix multiplications, computing the L2

norm of a vector, and some divisions, hence the only missing part is approximating divisions and
square-root operations (for the L2-norm). Since our construction already represent the log-value of
intermediate computations, then performing divisions is just as easy as multiplications – simply a
subtraction. As for the square-root, it can be approximated with Newton’s method with a quadratic
convergence, using just additions, multiplications and divisions. Combining these methods, an SVD

14

can be simulated with NN, and hence some of the most common approximated contraction schemes
as well.

15

	Introduction
	Preliminaries
	Main Results
	Discussion
	Introduction to Tensor Networks
	Related Works on Approximating Polynomial Functions with Neural Networks
	Proof of Theorem 1
	Proof Sketch
	Non-negative Case
	Complex Case
	Estimating logz
	Estimating argz

	Illustration of a Volume-Law Neural-Network Quantum State
	Proof Sketch for Extending Results to Approximated Contraction Schemes

