
Embedding temporal error propagation on CNN for
unsteady flow simulations

Ekhi Ajuria Illarramendi
ISAE-SUPAERO / CERFACS
Université de Toulouse, France
ekhi.ajuria@cerfacs.fr

Michaël Bauerheim
ISAE-SUPAERO

Université de Toulouse, France
michael.bauerheim@isae-supaero.fr

Bénédicte Cuenot
CERFACS

23 av Coriolis, Toulouse
cuenot@cerfacs.fr

Antonio Gimenez Nadal
ISAE SUPAERO

Université de Toulouse, France
antonio.gimenez-nadal@student.isae-supaero.fr

Abstract

This work investigates the interaction of a CNN-based Poisson solver with an
incompressible fluid solver for unsteady flow simulations. During training, the
network prediction is used to continue in time the computation, embedding the
influence of the network prediction on the simulation using a long-term loss. This
study investigates three implementations of such a loss, as well as the number
of look-ahead iterations. On all test cases, results show that long-term losses are
always beneficial. Interestingly, a partial implementation without differentiable
solver is found accurate, robust and less costly than full implementation.

1 Introduction

Simulating incompressible flows is vital for engineering purposes, although performing accurate
simulations usually comes at a high computational cost [1]. The recent rise of machine learning (ML)
has introduced a powerful tool to the CFD community, which can be used as surrogate model to
model fluid flows [2, 3].

However, neural networks do not guarantee respecting the underlying physics of the simulated prob-
lem, thus different strategies have been developed to embed physical knowledge to the networks. The
residual of the governing physical equations has been introduced as loss functions [4, 5] outperform-
ing their image-to-image counterparts. The differentiable nature of the network has also been used to
accurately compute the residual of the studied PDE [6] with the introduction of physics-informed
neural networks (PINN). Moreover, the development of differentiable fluid solvers [7] has enabled
to backpropagate errors through entire fluid simulations, making it possible to directly encode the
nonlinear fluid solver behavior into the network.

This work follows the study of Tompson et al. [4], where a CNN solves the Poisson equation for
incompressible flows, and the propagation of the network error through the simulation is embedded
during training using a long-term loss (LTL). The differentiable phiflow [7] (https://github.
com/tum-pbs/PhiFlow) fluid solver is used, to assess the benefit of computing the intermediate
gradients, full long-term loss (F-LTL), as well as the influence of the number of look-ahead iterations
(LAI). Since F-LTL is computationally expensive and requires a large amount of memory, F-LTL
is compared with a partially frozen long-term loss (PF-LTL) for which no differentiable solver
is required. The benefits of the introduction of intermediate gradients is still an open question

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).

https://github.com/tum-pbs/PhiFlow
https://github.com/tum-pbs/PhiFlow

with crucial fundamental and practical implications, which is studied here by comparing accuracy,
robustness, and computational cost of F-LTL and PF-LTL1.

2 Poisson equation on incompressible fluid solvers

This work focuses on the resolution of the 2D incompressible Navier-Stokes equations. They are
solved with a standard operation splitting method, which divides the solving procedure into two
main steps: (i) the advection and (ii) the pressure projection [8]. The advection step generates a non
divergence-free velocity u∗ which needs to be updated in the pressure projection step. To update the
velocity, a simple forward Euler is used, which after taking the divergence of both sides results in the
Poisson equation

∆t

ρ0
∇2p = ∇ · u∗ (1)

where p is the pressure field, ρ0 the background density and ∆t the simulation timestep. The
resolution of this equation can take up to 80% of the computational time [3], and it is usually solved
with iterative solvers, such as the Conjugate Gradient (CG). A thorough comparison of the network
inference ran on GPU cards, compared to traditional CPU linear solvers can be found in the work of
Cheng et al. [9]. Following the work of Tompson et al. [4], this work substitutes the costly resolution
of this equation with a CNN.

3 Training procedure

A Unet neural network [10] with 5 down-sampled scales and 400 000 parameters [3] is chosen as
architecture. The network is trained on a set of 320 simulations with 64 time steps (i.e. 20480
snapshots) computed with a CG solver. These simulation domains have 128x128 cells, including
random geometries and divergence sources, with no buoyancy-driven forces and no viscosity.

Advection CNN

t t+1

u u ...

t+n-1 t+n

u

|∇ · u|t+n

CNNAdvection Advection

|∇ · u|t+1

CNN

PF-LTL

F-LTL

STL

Figure 1: Training configurations: STL (green dotted line), PF-LTL (blue dashed line) and F-LTL
(red dash-dotted line).

The training strategy is depicted in Fig. 1. As first introduced by Tompson et al. [4], the corrected
velocity field needs to respect the incompressibility condition (∇·u = 0), which can be used as a loss
function to train the network. If only the divergence of the corrected velocity field is taken, without
further modifications, the training loss will be known as Short-term loss (STL), corresponding to the
green dotted line in Fig. 1. However, the corrected velocity field ut+1 can then be advected n times,
propagating the error made by the network through the fluid simulation. The contribution of the
divergence of the velocity ut+n to the global loss L is denoted long-term loss (LTL).The choice of the
number of LAI (n) remains an open question that this work tries to answer. Longer simulations can
incorporate more information, although it can de-stabilize trainings and increase the computational
cost of the training. Thus, the training loss can be written as

L = α‖∇ · ut+1‖2 + β‖∇ · ut+n‖2 (2)

where α and β correspond to user-defined weighting parameters. The particular case where β = 0
corresponds to the STL training. When computing the error made in the timestep n, the error can
be backpropagated over all the solver steps (F-LTL), including all advection and Poisson solvers
(red dash-dotted line in Fig. 1), thus requiring a differentiable solver (here phiflow [7]) and large

1The code used to reproduce the results of this paper is publically available at https://gitlab.
isae-supaero.fr/daep/neurasim

2

https://gitlab.isae-supaero.fr/daep/neurasim
https://gitlab.isae-supaero.fr/daep/neurasim

computational and memory requirements. To avoid these constraints, the PF-LTL strategy [4, 3]
proposes to freeze the network parameters through the simulations to skip the advection blocks during
backpropagation, so that only ut+1 and ut+n are used (blue dashed line in Fig. 1).

Thus, the Unet network is trained with the three mentioned strategies (STL, PF-LTL and F-LTL),
where several different numbers of LAI are tested to check the influence of longer simulations on the
network training. This number comes in a tuple, since during the training process the first number is
performed 90% of the time, and the second the remaining 10%. For the loss function hyperparameters,
α is set to 1 and β to 5 for the PF-LTL and F-LTL cases, as increasing the relative weight of the
LTL helped to balance the network training. All the networks are trained with the Adam optimizer
(with an initial learning rate set to 5 · 10−5). All trainings and inference tests were performed in 16
Gb Nvidia Tesla V-100 GPU cards. The objective of this work is to determine, on 3 test cases, the
actual accuracy and requirements of these 3 strategies, and to establish guidelines for future practical
implementations of such CNN coupled with unsteady solvers.

4 Test Cases

The neural networks are tested in three flow configurations, depicted in Fig. 2 that significantly
differ from the training cases (same as in [3, 4]). The objective is to evaluate the accuracy but
also the robustness of the 3 strategies, as encountered in a real application of such a solver. First,
as the training dataset is inviscid, the flow around a cylinder (Fig. 2-a) at Reynolds 100 is tested.
Evaluation is also performed on rotating flows. To do so, a rotating velocity is imposed in the
previous case, parametrized by the dimensionless rotating velocity α = ωD/(2U∞), where ω is the
counter-clockwise rotating velocity of the cylinder,D the obstacle diameter and U∞ the input velocity.
The flow is tested at α = 0 (no rotation), 1 and 1.5 and the accuracy is evaluated comparing the relative
difference of the amplitude of the dimensionless lift coefficients Al = max(|Cl|) − min(|Cl|),
between the neural network prediction and the result computed with the reference CG solver:
EV K = |ACG

l −ANN
l |/ACG

l .

Figure 2: Test configurations: a rotating cylinder (a) and a plume without (b) and with (c) obstacle.

Then, as the training dataset does not have buoyancy-driven forces, the networks are tested on a
buoyant plume, flows where a lighter fluid is injected into a quiescent environment. Plumes without
obstacle (Fig. 2-b) and with a cylinder (Fig. 2-c) are tested. Buoyant plumes are parametrized
with the dimensionless Richardson number, Ri = (∆ρ/ρ0)Lg/U2

∞, where ∆ρ/ρ0 is the density
difference between the injected fluid and the quiescent environment, L the inflow radius, g gravity
and U∞ the injection velocity. This parameter characterizes the ratio between buoyancy-driven
forces and momentum-driven forces. For both the non-cylinder and cylinder configurations, Ri
= 0.1, 1 and 10 are tested. For the non cylinder configuration (referred to as plume) the accuracy
is evaluated comparing the relative difference of the plume head position hy between the studied
network and the simulation computed with a reference CG solver: EPlume = |hCG

y − hNN
y |/Ly at

the moment where the reference plume reaches the 70% of the domain. The metric used for the
cylinder configuration (referred as Cyl. Plume) penalizes the loss of symmetry between the left and
right branches. Thus, the average of the left and right plume heads (hy−l and hy−r) are compared
to the simulation performed with the CG solver, when the plume head reaches 80% of the domain
height: ECyl−plume = (1 + ∆hNN

y)|hCG
y−avg − hNN

y−avg|/Ly, where ∆hNN
y = |hNN

y−r − hNN
y−l | and

hNN
avg−y = 1/2(hNN

y−l + hNN
y−r|). Note that trainings are performed at α = 0, Re =∞ and Ri = 0.

3

Table 1: EV K−l, EPlume and ECyl−plume in % for the STL, F-LTL and PF-LTL trainings.

Rotating cyl. (α) Plume (Ri) Cyl. plume (Ri)
LAI 0 1 1.5 0.1 1 10 0.1 1 10

STL 0 14.9 44.3 35.8 11.7 11.7 8.6 11.7 13.7 289.5

1-2 2.7 3.6 2.3 7.8 7.0 10.9 3.9 7.4 64.4
F-LTL 2-4 2.0 1.0 0.7 8.6 7.0 10.9 3.1 15.6 107.4

2-6 3.6 3.3 4.7 7.8 7.0 10.9 5.5 17.2 84.4

2-4 2.6 6.0 1.9 8.6 7.0 10.1 5.5 15.6 84.4
PF-LTL 4-8 5.2 3.4 2.4 10.2 5.5 10.9 5.5 9.0 64.4

4-16 3.7 2.2 3.2 7.8 6.2 10.9 3.9 8.2 84.4

5 Results

Results for the 3 strategies are found in Table 1 and Fig. 3. First, the benefit of adding the LTL to
the training procedure (either F-LTL or PF-LTL) is highlighted, as results are almost one order of
magnitude better in the rotating cylinder case, and almost two times better in the plume. Comparing
the F-LTL and PF-LTL trainings, the results are rather similar, with small differences between the
studied networks. The F-LTL networks slightly outperform the PF-LTL networks in the flow around
the cylinder and at plumes with low Richardson numbers. However, the PF-LTL networks better
handle higher Richardson numbers, hinting a possible slight over-fitting for the F-LTL networks for
which backpropagation through advection (without buoyancy and viscosity) has been performed.
This effect is especially highlighted on the Cylinder plume test case, as small losses in symmetry
considerably penalize the F-LTL trainings. The Cylinder plume test case highlights the difficulty of
encoding complex flows, which could be tackled introducing a hybrid strategy combining classical
linear solvers with the network prediction, to ensure an user-defined accuracy level [11].

Regarding the number of LAI, its increase is beneficial for the PF-LTL networks, as on average the
4-16 iteration network shows the best overall behavior. Using PF-LTL networks, as no intermediate
gradients were needed, the batch size could be increased up to 110 for all 3 studied networks. During
training, the 4-8 and 4-16 networks took respectively an average of 280 s and 295 s per epoch (in a
single GPU training), whereas the 2-4 network took an average of 170 s per epoch. However, for the
F-LTL trainings, the 2-4 network is an optimal intermediate compared to the 1-2 and 2-6 networks.
Too many LAI can cause vanishing gradients, making the network convergence during training more
difficult. Moreover, the batch size needed to fill the GPU is reduced, resulting respectively in batch
sizes of 46, 24 and 16, which lead to an average of 290, 490 and 1750 s per epoch (in a single
GPU training). For practical applications (large datasets, etc.), F-LTL is difficult to train, as the
intermediate gradients introduce longer backpropagation chains, more prone to vanishing/exploding
gradient issues, with small benefits compared with PF-LTL in terms of accuracy. However, PF-LTL
requires longer LAI, which only affects the training time, since memory usage does not depend on
LAI for this strategy.

6 Conclusions

Training strategies that embed information of the unsteady flow simulation (LTL) have been stud-
ied. Results show that both F-LTL and PF-LTL outperform STL trainings. Moreover, the use of
intermediate gradients during the training might not always be beneficial, as similar results can be
obtained with PF-LTL trainings at smaller computational cost. F-LTL networks can be trickier to
train due to the greater backpropagating gradient chains. Increasing the number of LAI iterations
improves the accuracy of PF-LTL networks, while lower LAI are needed for F-LTL networks. The
method could be extrapolated to 3D cases, where CNNs are expected to outperform classical linear
solvers and perform accurate simulations. However, more computational power would be needed,
especially to perform a F-LTL strategy for 3D cases. While limiting the computational resources
during training, PF-LTL is expected to encode sufficient information to make accurate predictions
while not considerably increasing the computational cost, even in such realistic 3D large simulations.

4

Reference STL PF-LTL F-LTL
0.15

0

-0.15

<latexit sha1_base64="lVdrjJo1Yk8FuET8puG3P+zh1o0=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkWoC0sioi6LblxWtA+obUnSaQ3Ni8lEqKUgbv0Bt/pT4h/oX3hnTEEtohOSnDn3njNz77Ujz42FYbxmtJnZufmF7GJuaXlldS2/vlGLw4Q7rOqEXsgbthUzzw1YVbjCY42IM8u3PVa3B6cyXr9hPHbD4FIMI9byrX7g9lzHEkS1ayHv3OrFuD3aM8e7nXzBKBlq6dPATEEB6aqE+RdcoYsQDhL4YAggCHuwENPThAkDEXEtjIjjhFwVZxgjR9qEshhlWMQO6NunXTNlA9pLz1ipHTrFo5eTUscOaULK44TlabqKJ8pZsr95j5SnvNuQ/nbq5RMrcE3sX7pJ5n91shaBHo5VDS7VFClGVuekLonqiry5/qUqQQ4RcRJ3Kc4JO0o56bOuNLGqXfbWUvE3lSlZuXfS3ATv8pY0YPPnOKdBbb9kHpbM84NC+SQddRZb2EaR5nmEMs5QQZW8OR7xhGftQhtqd9r9Z6qWSTWb+La0hw9rjpQ1</latexit>

V orz(s
�1)

0

<latexit sha1_base64="NiRxQFAS1Loncnj6PpD7ygZ/A+8=">AAAC4XicjVHLSgMxFD0d3/VVdamLwSK4KjMi6lLUhUsFawsdKZk0bQfnRSYjSOnGnTtx6w+41Z8R/0D/wps4gg9EM0xycu49J7m5fhoGmXKc55I1Mjo2PjE5VZ6emZ2brywsnmZJLrmo8yRMZNNnmQiDWNRVoELRTKVgkR+Khn++r+ONCyGzIIlP1GUqziLWi4NuwJkiql1Z8bqS8YF3IELFbE/2k6E90EvbGdrtStWpOWbYP4FbgCqKcZRUnuChgwQcOSIIxFCEQzBk9LXgwkFK3BkGxElCgYkLDFEmbU5ZgjIYsec092jXKtiY9tozM2pOp4T0S1LaWCNNQnmSsD7NNvHcOGv2N++B8dR3u6TVL7wiYhX6xP6l+8j8r07XotDFjqkhoJpSw+jqeOGSm1fRN7c/VaXIISVO4w7FJWFulB/vbBtNZmrXb8tM/MVkalbveZGb41Xfkhrsfm/nT3C6UXO3au7xZnV3r2j1JJaxinXq5zZ2cYgj1Mn7Cvd4wKPFrWvrxrp9T7VKhWYJX4Z19wYo6Jqx</latexit>

�⇢

⇢0

<latexit sha1_base64="OVDWjqQZ7vwUkoyLQ71d6IZYVpM=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0o7sK9gFaJJlO29AkE5JJsRQX/oBb/TPxD/QvvDNOQS2iEzJz5tx7zsyd6ydhkEnHeS1Yc/MLi0vF5dLK6tr6Rnlzq5mJPGW8wUQo0rbvZTwMYt6QgQx5O0m5F/khb/nDMxVvjXiaBSK+kuOEdyKvHwe9gHlSUU7VcW/LFVr0sGeBa0AFZtRF+QU36EKAIUcEjhiScAgPGX3XcOEgIa6DCXEpoUDHOe5RIm1OWZwyPGKHNPdpd23YmPbKM9NqRqeE9KektLFHGkF5KWF1mq3juXZW7G/eE+2p7jam1TdeEbESA2L/0k0z/6tTtUj0cKJrCKimRDOqOmZccv0q6ub2l6okOSTEKdyleEqYaeX0nW2tyXTt6m09HX/TmYpVe2Zyc7yrW1KD3Z/tnAXNg6p7VHUvDyu1U9PqInawi33q5zFqOEcdDfIe4BFPeLYuLGGNrLvPVKtgNNv4NqyHD4glj+g=</latexit>

0.01

<latexit sha1_base64="oZoMfJjTG2hT7x8BG0wyA8YlHBs=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLoRncV7ANqkWQ6bYemSUgmxVJc+ANu9c/EP9C/8M44BbWITsjMmXPvOTN3rh8HIpWO85qzFhaXllfyq4W19Y3NreL2TiONsoTxOouCKGn5XsoDEfK6FDLgrTjh3sgPeNMfnqt4c8yTVEThtZzEvDPy+qHoCeZJRTllp3JbLNGihz0PXANKMKMWFV9wgy4iMGQYgSOEJBzAQ0pfGy4cxMR1MCUuISR0nOMeBdJmlMUpwyN2SHOfdm3DhrRXnqlWMzoloD8hpY0D0kSUlxBWp9k6nmlnxf7mPdWe6m4TWn3jNSJWYkDsX7pZ5n91qhaJHk51DYJqijWjqmPGJdOvom5uf6lKkkNMnMJdiieEmVbO3tnWmlTXrt7W0/E3nalYtWcmN8O7uiU12P3ZznnQqJTd47J7dVSqnplW57GHfRxSP09QxQVqqJP3AI94wrN1aUXW2Lr7TLVyRrOLb8N6+ACKhY/p</latexit>

0.02

<latexit sha1_base64="j1KUdQzZOdt2awRTRceD9isgX3U=">AAACx3icjVHLTsMwEJyGVymvAkcuERUSpyoBBBwruMCtSPQhlQolrttaTeMocSqqigM/wBX+DPEH8BesTSoBFQJHscezO2Ov148CkSjHec1Zc/MLi0v55cLK6tr6RnFzq57INGa8xmQg46bvJTwQIa8poQLejGLuDf2AN/zBuY43RjxOhAyv1Tji7aHXC0VXME9pyik7h7fFEi1m2LPAzUAJ2ajK4gtu0IEEQ4ohOEIowgE8JPS14MJBRFwbE+JiQsLEOe5RIG1KWZwyPGIHNPdo18rYkPbaMzFqRqcE9MektLFHGkl5MWF9mm3iqXHW7G/eE+Op7zam1c+8hsQq9In9SzfN/K9O16LQxampQVBNkWF0dSxzSc2r6JvbX6pS5BARp3GH4jFhZpTTd7aNJjG167f1TPzNZGpW71mWm+Jd35Ia7P5s5yyoH5Td47J7dVSqnGWtzmMHu9infp6gggtUUSPvPh7xhGfr0pLWyLr7TLVymWYb34b18AGM5Y/q</latexit>

0.03

<latexit sha1_base64="ZAMkWHY25rd52POus6cSFmPQRZM=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwVRIp6rLoRncV7ANqkWQ6bYemSUgmxVJc+ANu9c/EP9C/8M44BbWITsjMmXPvOTN3rh8HIpWO85qzFhaXllfyq4W19Y3NreL2TiONsoTxOouCKGn5XsoDEfK6FDLgrTjh3sgPeNMfnqt4c8yTVEThtZzEvDPy+qHoCeZJRTllp3JbLNGihz0PXANKMKMWFV9wgy4iMGQYgSOEJBzAQ0pfGy4cxMR1MCUuISR0nOMeBdJmlMUpwyN2SHOfdm3DhrRXnqlWMzoloD8hpY0D0kSUlxBWp9k6nmlnxf7mPdWe6m4TWn3jNSJWYkDsX7pZ5n91qhaJHk51DYJqijWjqmPGJdOvom5uf6lKkkNMnMJdiieEmVbO3tnWmlTXrt7W0/E3nalYtWcmN8O7uiU12P3ZznnQOCq7x2X3qlKqnplW57GHfRxSP09QxQVqqJP3AI94wrN1aUXW2Lr7TLVyRrOLb8N6+ACPRY/r</latexit>

0.04

<latexit sha1_base64="LBMdURhZmqpE7Yb6vYdX93nAZZ4=">AAACx3icjVHLTsMwEJyGVymvAkcuERUSpypBvI4VXOBWJPqQSoUS122tpnGUOBVVxYEf4Ap/hvgD+AvWJpWACoGj2OPZnbHX60eBSJTjvOasufmFxaX8cmFldW19o7i5VU9kGjNeYzKQcdP3Eh6IkNeUUAFvRjH3hn7AG/7gXMcbIx4nQobXahzx9tDrhaIrmKc05ZSdo9tiiRYz7FngZqCEbFRl8QU36ECCIcUQHCEU4QAeEvpacOEgIq6NCXExIWHiHPcokDalLE4ZHrEDmnu0a2VsSHvtmRg1o1MC+mNS2tgjjaS8mLA+zTbx1Dhr9jfvifHUdxvT6mdeQ2IV+sT+pZtm/lena1Ho4tTUIKimyDC6Opa5pOZV9M3tL1UpcoiI07hD8ZgwM8rpO9tGk5ja9dt6Jv5mMjWr9yzLTfGub0kNdn+2cxbUD8rucdm9OixVzrJW57GDXexTP09QwQWqqJF3H494wrN1aUlrZN19plq5TLONb8N6+ACRpY/s</latexit>

0.05

Figure 3: Snapshots of the reference (black line), STL (orange dotted line), PF-LTL 4-16 (blue dashed
line) and F-LTL 2-4 (red dash-dotted line) for the flow around a rotating cylinder with α = 1.5 (top)
and plume simulation with Ri=1 (bottom).

References
[1] LE Jones, RD Sandberg, and ND Sandham. Direct numerical simulations of forced and unforced

separation bubbles on an airfoil at incidence. Journal of Fluid Mechanics, 602:175–207, 2008.

[2] Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. In Computer graphics forum, volume 38, pages 71–82. Wiley
Online Library, 2019.

[3] Ekhi Ajuria Illarramendi, Michaël Bauerheim, and Bénédicte Cuenot. Performance and accuracy
assessments of an incompressible fluid solver coupled with a deep convolutional neural network.
arXiv e-prints, pages arXiv–2109, 2021.

[4] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating
eulerian fluid simulation with convolutional networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 3424–3433. JMLR.org, 2017.

[5] Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
Graphics Forum, volume 38, pages 59–70. Wiley Online Library, 2019.

[6] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

[7] Philipp Holl, Vladlen Koltun, Kiwon Um, Telecom Paris LTCI, IP Paris, and Nils Thuerey.
phiflow: A differentiable pde solving framework for deep learning via physical simulations. In
NeurIPS Workshop, 2020.

[8] Robert Bridson. Fluid Simulation. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[9] Lionel Cheng, Ekhi Ajuria Illarramendi, Guillaume Bogopolsky, Michael Bauerheim, and
Benedicte Cuenot. Using neural networks to solve the 2d poisson equation for electric field
computation in plasma fluid simulations. arXiv preprint arXiv:2109.13076, 2021.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[11] Ekhi Ajuria Illarramendi, Antonio Alguacil, Michaël Bauerheim, Antony Misdariis, Benedicte
Cuenot, and Emmanuel Benazera. Towards an hybrid computational strategy based on deep
learning for incompressible flows. In AIAA AVIATION 2020 FORUM, page 3058, 2020.

5

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] This work

does is not susceptible of having negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [No] This work
does not include theoretical results

(b) Did you include complete proofs of all theoretical results? [No] This work does not
include theoretical results

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 1,
https://anonymous.4open.science/r/neurasim-D84B/

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The license agreement is specified in

the repository of the code of this work
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Section 3, https://github.com/tum-pbs/PhiFlow
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] The consent was not necessary under the asset’s license.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] The used data does not contain any personal or
offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] No crowdsourcing or human subjects were used for this study.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [No] No crowdsourcing or human subjects were
used for this study.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] No crowdsourcing or human subjects were
used for this study.

6

https://anonymous.4open.science/r/neurasim-D84B/
https://github.com/tum-pbs/PhiFlow

	Introduction
	Poisson equation on incompressible fluid solvers
	Training procedure
	Test Cases
	Results
	Conclusions

