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Abstract

The transport of traffic flow can be modeled by the advection equation. Finite
difference and finite volumes methods have been used to numerically solve this
hyperbolic equation on a mesh. Advection has also been modeled discretely on
directed graphs using the graph advection operator [4, 18]. In this paper, we first
show that we can reformulate this graph advection operator as a finite difference
scheme. We then propose the Directed Graph Advection Matérn Gaussian Process
(DGAMGP) model that incorporates the dynamics of this graph advection operator
into the kernel of a trainable Matérn Gaussian Process to effectively model traffic
flow and its uncertainty as an advective process on a directed graph.

1 Introduction

The continuous linear advection equation models the flow of a scalar concentration along a vector
field. The solutions to this hyperbolic partial differential equation may develop discontinuities or
shocks over time depending on the initial condition. These shocks can model the formation of traffic
jams, and their propagation along a road [20]. Figure 1 illustrates an example, where initially the
first half of the road is 70% occupied with cars, and the second half of the road is empty. The traffic
propagates to the right until the whole road is 70% occupied. Classical methods, such as finite
differences and finite volumes, have been used to predict the flow of traffic along a road [15, 20].
These classical numerical methods do not incorporate any randomness into the model, and can be
limited in incorporating the uncertainty among different driver’s behaviors [6].

Figure 1: Propagation of cars on a road using an
advection process.

Gaussian processes (GPs) [19] can learn unknown
functions that allow use of prior information about
their properties and for uncertainty modeling.
Küper and Waldherr [10] propose the Gaussian
Process Kalman Filter (GPKF) method to simu-
late spatiotemporal models, and test on the ad-
vection equation. Raissi et al. [17] train GPs on
data to learn the underlying physics of non-linear
advection-diffusion equations. Additional physics-
based machine learning models [2] use the Matérn
covariance function given below:

u ∼ N
(
0,
(2ν

κ2
+ ∆

)−ν)
, (1)

where u denotes an unknown function, ν <∞, κ <∞ and ∆ denotes the laplacian [1]. The Matérn
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kernel captures physical processes due to its finite differentiability, and is also commonly used to
define distances between two points that are d units distant from each other [2]. Gulian et al. [8]
propose training joint Matérn GPs to model space-fractional differential equations, in which the
advection-diffusion equation is a special case.

Recent works including [22] have studied solving partial differential equation (PDEs) on graphs.
Chapman and Mesbahi [4], Rak [18] propose discrete advection and consensus operators to model
advection and diffusion flows, respectively on directed graphs. Hošek and Volek [9] study the
advection-diffusion equation on graphs using this discrete advection operator, and show that finite vol-
ume numerical discretizations can be reformulated as equations on graphs resulting in a corresponding
maximum principle for this operator. Additional works have also looked at combining scientific
computing and machine learning on graphs for spatiotemporal traffic modeling [12]. Chamberlain
et al. [3] propose the Graph Neural Diffusion (GRAND) method, which combines traditional ODE
solvers with graph neural networks (GNNs) to model diffusion on a undirected graph. Borovitskiy
et al. [2] propose to replace the continuous laplacian ∆ in (1) with the discrete graph laplacian
operator L to model diffusion on undirected graphs, which can be limited for traffic modeling.

The goal of this paper is two-fold: to develop a model that effectively models traffic flow as an
advective process on a directed graph and its uncertainty. We propose a novel method, Directed Graph
Advection Matérn Gaussian Process (DGAMGP) that uses a symmetric positive definite variant of
the graph advection operator Ladv as a covariance matrix in the Matérn Gaussian Process. We use the
square of the singular values of Ladv to model the advection dynamics, and train a Matérn Gaussian
Process to model the uncertainty. We also show the connection between consistent finite difference
stencils for solving the linear advection equation and the graph advection operator. Our novel linkage
helps improve the understanding and interpretability of this graph advection operator.

2 Understanding the directed graph advection operator

We aim to model the continuous advection equation for unknown scalar u under vector field v:

∂u

∂t
= −∇ · (vu),

stochastically on a directed graph. We define a directed, weighted graph G = (V,E,W ) with |V | = n
nodes and |E| = |W | = m edges, where V denotes the vertex, E the edge, and W the edge weight
sets, respectively. We discretize the flow vu along edge (i, j) ∈ E with weight wji ∈W as wjiui(t),
where ui(t) denotes the concentration u at node i and time t.

The graph advection operator Ladv is defined so that the flow into a node equals the flow out of it [4]:

dui(t)

dt
=

∑
j:(j,i)∈E

wijuj(t)−
∑

j:(i,j)∈E

wjiui(t) = −[Ladvu(t)]i, (2)

where Ladv = Dout − Ain for diagonal out-degree matrix Dout and in-degree adjacency matrix
Ain. For general directed graphs, Ladv belongs to the square, non-symmetric with non-negative real
part eigenvalues [18] class of matrices in [14]. By design, Ladv is conservative, unlike the related
diffusion or consensus operator Lcons = Din − Ain, where Din denotes the diagonal in-degree
matrix [4, 18]. A main motivating reason for using Ladv to model traffic flow is that it results in a
conservative scheme.

Reformulation of Ladv as finite difference on balanced graphs. We notice that Ladv at node i
is a weighted linear combination of the other nodes adjacent to it, which resembles finite difference
stencils of the unknown and its neighbors. We make this connection precise, and then construct
example graphs where Ladv corresponds to common finite difference schemes for linear advection.

Theorem 2.1. Ladv corresponds to a semi-discrete finite difference advection scheme, where the sum
of the coefficients is zero if and only if the graph G is balanced, i.e. Ladv = Lcons.
Proof. A finite difference approximation to the gradient can be written as the following weighted
linear combination of its neighbors uj for arbitrary coefficients cij ∈ R:

−(ux)i ≈
∑
j 6=i

cijuj + ciiui. (3)
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A consistent finite difference scheme is at least zero-th order accurate [11]. Since the derivative of a
constant is 0, the coefficients must sum to 0, i.e cii = −

∑
j 6=i cij . Combining (2) with (3) gives:

(Dout)ii =
∑

j:(i,j)∈E

wji = −cii =
∑
j 6=i

cij =
∑

j:(j,i)∈E

wij = (Din)ii.

The graph G is balanced by definition, and it follows that Ladv = Lcons. The other direction follows
similarly.

Applying Ladv on the directed line graph in Figure 2(a) results in the first order upwind scheme
with spatial step size ∆x for v > 0 in (5) (See Appendix A and Figure 6 for the convergence study).
Similarly, Figure 2(b) illustrates the directed graph in which Ladv gives the second order central
difference scheme, where (ux)i ≈ (ui+1 − ui−1)/(2∆x) (See Appendix B for additional examples).

ui−1 ui ui+1
v/∆x v/∆x

(a) first order upwind scheme

ui−1 ui ui+1
v/2∆x −v/2∆x

−v/2∆x v/2∆x

(b) second order central scheme

Figure 2: Balanced graphs on which Ladv corresponds to finite difference stencils of linear advection.

3 Directed Graph Advection Matérn Gaussian Process (DGAMGP)

We propose the novel Directed Graph Advection Matérn Gaussian Process (DGAMGP) model, which
uses the dynamics of Ladv to model advection stochastically on a directed graph through a discrete
approximation to the continuous Laplacian ∆ of the Matérn Gaussian Process in (1). The covariance
matrix or kernel K of a Gaussian process needs to be symmetric and positive semi-definite. This
leads to some challenges with the Ladv operator as it is not guaranteed in general to be symmetric or
positive semi-definite (See Section 2). Note that using the graph Laplacian L in the covariance matrix
in the undirected graph case is more straightforward since L is symmetric positive semi-definite.

In our directed graph case, we propose using LTadvLadv as the covariance matrix since it is symmetric
positive definite, and hence orthogonally diagonalizable. Analogous to [2], we define a function φ of
a diagonalizable matrix through Taylor series expansion. Then we can define its eigendecomposition
as LTadvLadv = XadvΛadvX

T
adv, so that φ(LTadvLadv) = Xadvφ(Λadv)X

T
adv, where φ(Λadv) is

computed by applying φ to the diagonal elements of Λadv .

We compute the eigendecomposition of LTadvLadv = VadvΣ
2
advV

T
adv , using the singular value decom-

position (SVD) of Ladv = UadvΣadvV
T
adv, where the eigenvalues and eigenvectors are the singular

values squared and right singular vectors of Ladv, respectively. Hence, we model the advection
dynamics using the square of the singular values of Ladv . Our approach can also be viewed as adding
the square of the singular values of Ladv to the diagonal for regularization. Computing the thin-SVD
is more computationally efficient and numerically stable, since we avoid explicitly forming the
matrix-matrix product LTadvLadv , which has double the condition number of Ladv , and the numerical
issues with then computing its eigendecomposition.

We chose φ to be the Matérn covariance function in (1), and our DGAMGP model is given by:

u ∼ N
(
0,
(
Vadv(

2ν

κ2
I + Σ2

adv)
−νV Tadv

))
. (4)

This advective Gaussian Process is then trained on data by minimizing the negative log-likelihood of
the Gaussian Process to learn the kernel hyperparameters ν and κ, and predict u [7]. For inference,
we draw samples from the GP predictive posterior distribution with the learned hyperparameters [19].
See Algorithm 1 for details.

Choice of LTadvLadv . There are alternate approaches to symmetrize Ladv . The first simple approach
explored is to utilize Lsym = (LTadv + Ladv)/2 . This operator is not positive semi definite except
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in the balanced graph case. The second approach is to use the symmetrizer method in [21], which
generates a symmetric matrix L′sym with the same eigenvalues as Ladv but is not always positive
semi definite.

Algorithm 1 The Directed Graph Advection Matérn Gaussian Process (DGAMGP)

Given a directed graph G = (V,E,W ) and training data D = {(xi, yi)}ni=1.
1. Compute Ladv(G) = Dout −Ain.
2. Compute the SVD of Ladv = UadvΣadvV

T
adv .

3. Generate a DGAMGP model in (4).
4. Minimize the GP negative log marginal likelihood using D to learn ν, κ and σ [7].
5. Given test data {x∗i }, draw samples from the GP predictive posterior distribution [19].

4 Numerical Results
In this section, we utilize our DGAMGP model for traffic modeling on synthetic and real-
world directed traffic graphs. The data D = {(xi, yi)}ni=1 denotes the traffic flow speed in
miles per hour yi at location xi. We test our model’s predictive ability to predict the veloci-
ties of cars on a road at different positions. We use hold-out cross validation to split the data
points generated into training (70% of the data) and testing data (30% of the data). We extend
the code in [2] to compute the singular value decomposition of Ladv to train our DGAMGP
model on a directed graph. The code is available at https://github.com/advectionmatern/
Modeling-Advection-on-Directed-Graphs-using-Mat-e-rn-Gaussian-Processes, and
the experiments are run on Amazon Sagemaker [13].

Regression results on synthetic graphs. We generate synthetic data that models traffic along a
road, which has a relatively high density of cars in the first half and a low density of cars in the second
half. We train and test our model on the upwind scheme in Figure 2(a), central scheme in Figure
2(b), an intersecting lane graph, where two lanes merge into one lane in Figure 3(a) and a loop graph
representing the upwind scheme with periodic boundary conditions in Figure 3(b). Table 1 compares
the results to the consensus baseline model of using the singular value decomposition of Lcons in
Eqn. (4).

Model Graph type n = 280 n = 325 n = 400 ν κ σ
Advection Upwind 0.52 0.45 0.0005 0.65 8.09 7.75
Consensus 0.51 0.44 0.0005 0.65 8.29 7.77
Advection Central 1.31 0.85 8.41e-05 0.67 9.00 8.03
Consensus 0.97 0.8 8.02e-05 0.67 9.45 8.11
Advection Intersection 0.96 0.45 0.0005 0.65 8.19 7.75
Consensus 0.52 0.46 0.0005 0.64 8.28 7.77
Advection Loop 0.47 0.41 0.00045 0.65 8.49 7.76
Consensus 0.47 0.41 0.00045 0.65 8.49 7.76

Table 1: Comparison of l2 test error on synthetic directed graphs with n nodes and the learned
hyperparameters.

ui−2 ui−1 ui

ui−4 ui−3

ui+1
v/∆x v/∆x

v/∆x v/∆x

2v/∆x

(a) intersection graph

u1 ui−1 ui un
v/∆x v/∆x v/∆x

v/∆x

(b) loop graph

Figure 3: Graphs representing two lanes merging into one (left) and a loop (right).
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Regression results on a real-world traffic graph. We test on the real-world traffic data from the
California Performance Measurement System [5] with the road network graph from the San Jose
highways from Open Street Map [16] at a fixed time. Since our method supports directed graphs,
we do not need to convert the raw directed traffic data to an undirected graph as in [2]. We use the
same experimental setup from [2] to generate the train and test data. Figure 4 shows the resulting
predictive mean and standard deviation of the speed on the San Jose highways using the visualization
tools from [2]. We notice that the predictive standard deviation along the nodes is relatively small,
and is larger on the points that are farther from the sensors.

Figure 4: Traffic speed interpolation over a graph of San Jose highways using our DGAMGP method
with ν = 0.35, κ = 1002.8, σ = 1.14 and plotting tools from [2].

5 Conclusions

In this paper, we propose a novel method DGAMGP to model an advective process on a directed
graph and its uncertainties. We show connections between finite differences schemes used to solve
the linear advection equation and the graph advection operator Ladv employed in our model. We
explore a regression problem on various graphs, and show that our proposed DGAMGP model
performs similarly to other state-of-the-art models. Future work includes adding a time-varying
component to our model, comparing our method to classical numerical methods for solving PDEs,
and incorporating the behavior of the non-linear advection equation for traffic modeling.
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A Upwinding discretizations of linear advection

We discretize the 1D linear advection equation with velocity v:
ut + vux = 0,

using the standard first order upwinding scheme on a simple uniform Cartesian mesh with spatial step
size ∆x. Then the classical finite difference first-order upwind scheme depends on the sign of v. For
flow moving from left to right, v > 0, and we have the following semi-discrete discretization [11]:

dui
dt

+ v
ui − ui−1

∆x
= 0, if v > 0,

dui
dt

+ v
ui+1 − ui

∆x
= 0, if v < 0.

(5)

Upwinding schemes are useful in the advection case since information is moving from left to right.
The Courant-Friedrichs-Lewy (CFL) condition for stability of the first order upwinding scheme with
Forward Euler time-stepping discretization with time step ∆t is given by:∣∣∣v∆t

∆x

∣∣∣ ≤ 1 ⇐⇒ ∆t ≤
∣∣∣ v
∆x

∣∣∣.
A less diffusive second order upwind scheme is also known as linear upwind differencing (LUD),
and is given by:

dui
dt

= v
−ui−2 + 4ui−1 − 3ui

2∆x
. (6)

We can show that the scheme is second-order accurate using Taylor expansions. It is designed to be
less diffusive because the uxx term from the first-order upwinding scheme cancels. We have

ui−2 − 4ui−1 + 3ui
2∆x

=
1

2∆x

[(
u− 2∆xux +

4∆x2

2
uxx −

8∆x3

6
uxxx +O(∆x4)

)
+
(
− 4(u−∆xux +

∆x2

2
uxx −

∆x3

6
uxxx +O(∆x4))

)
+ 3u

]

= ux −
∆x2

3
uxxx +O(∆x4).

Hence, the scheme is second order accurate with a dispersive uxxx leading error term.

B Examples of Ladv on balanced graphs resulting in finite difference
discretizations of linear advection

In addition to the finite difference schemes provided in Section 2, we also provide an example of a
non-uniform mesh discretization:

dui
dx
≈

4
3ui+1/2 − ui − 1

3ui−1

∆x
,

which results in the following graph, where the in-going and out-going edges from ui:

ui−1 ui−1/2 ui ui+1/2 ui+1

v/3∆x v/3∆x

−4v/3∆x −4v/3∆x−4v/3∆x −4v/3∆x

v/3∆x

We can obtain the less diffusive second order upwind scheme (LUD) in (6) using the following graph:

ui−2 ui−1 ui ui+1 ui+2

−v/2∆x

2v/∆x 2v/∆x

−v/2∆x

2v/∆x

−v/2∆x

2v/∆x
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C Additional Experiments

C.1 Gaussian Process prior results with DGAMGP

A main property of the Matérn Gaussian Process kernel is that it varies along Riemannian manifolds.
The variance of the kernel is a function of degree, and depends on a complex manner on the graph.
We show the results generated with a star graph directed towards the center node and a directed
complete graph. Figure 5(a) shows that as expected for the complete graph, the nodes have the
same variability, since for a random walk starting from any node, there is equal probability to get to
another node. For the star graph in Figure 5(b), we observe that the center node has a variability of
approximately 0 as starting from any node on the graph, the random walk always ends at the center.

(a) complete graph prior. (b) star graph prior.

Figure 5: Prior results using DGAMGP obtained using various graphs, and plotting tools from [2].

C.2 Convergence Studies

We conduct a convergence study of applying Ladv on the upwind graph in Figure 2(a), and show that
it has first order convergence matching the performance of the equivalent first order upwind scheme.
We use the same initial condition as in Figure 1. We then solve the resulting system of ODEs using
the RK5 ODE solver. Figure 6(a) shows the solution at different time steps, and we see how the
solution is propagating to the right. Figure 6(b) shows a loglog plot, where the error is decreasing
linearly with a slope of 1 as the number of nodes n is increasing, as expected.

(a) Solution of the linear advection equation using (2) (b) Convergence study in a log-log plot

Figure 6: Upwinding solution with RK5 to the linear advection equation over time and corresponding
convergence study.
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