Score-based Graph Generative Model for Neutrino
Events Classification and Reconstruction

Yiming Sun*! Zixing Song*?> Irwin King?

'Department of Computer Science and Technology, University of Science and Technology of China,
Hefei, Anhui, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Sha Tin, N.T., Hong Kong SAR

sunyiming2000@mail .ustc.edu.cn, {zxsong, king}@cse.cuhk.edu.hk

Abstract

The IceCube Neutrino Observatory is an astroparticle physics experiment to inves-
tigate neutrinos from the universe. Graph Neural Networks (GNNs) have achieved
great success in this area due to their powerful modeling ability for the irregular
grid structure of the detectors. Unlike existing GNN-based methods which apply
GNNss directly on a simple constructed graph like kNN graph, we focus on the
graph construction step via the score-based generative model to enhance the quality
of the constructed graph for GNNs to operate on for downstream tasks. Extensive
experiments on the classification and reconstruction of neutrino events verify the
efficacy of our method.

1 Introduction

The IceCube Neutrino Observatory is a cubic-kilometer particle detector to observe neutrinos from
the universe. The detector consists of 5160 digital optical modules (DOMs). DOMs are attached to
86 vertical strings and the strings are deployed on a hexagonal grid [5] which is shown in Figure T[fa)).
We only sketch a portion of them as a top-view of the observatory such that 60 DOMs are in each
string and overlapping in depth within Figure[T|fa). The sensors detect and record the Cherenkov
radiation emitted by secondary charged particles produced in the primary neutrino interactions. We
can use the information to analyze the direction, energy and type of muons and neutrinos.

Event classification aims to observe a flux of muons from neutrino interactions or in down-going
events. The signal event refers to the muons produced in the neutrino-ice interaction, while the
background event includes muons from cosmic-ray interactions with the atmosphere. Our first
downstream task is to distinguish the signal from the background and the main difference between
them is light emission from the track. As shown in Figure [T|[c), signal has an uneven light track,
while the average emission of a bundle of muons in the background is more smooth, as shown in

Figure [T{{b) [2. 4]

After removing the background events, we can further reconstruct the events of our interests. Strictly
speaking, we need to predict the neutrino energy, the zenith angle of arrival direction, and the event
topology of each interaction. These parameters can be analyzed to estimate properties, including
traveled distance and neutrino flavor [|6} 10, [3].

*Equal contribution. Work done when the first author did an internship at CUHK.

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).

IceCube Lab

1450m |

2450m \\ DeepCore
2820m L————

Eiffel tower
324m

(a) Icecube detector schematic (b) Light deposition for muon (c) Light deposition for single
(Credit: IceCube Collaboration) bundles from background muon from signal (Credit:[T]])
(Credit:[[1]))

Figure 1: Background knowledge of Icecube experiment

[] 100
— 1:1
. oY Median
[] [] ’ 68% band
. 0%
. =
DOM P
® i vi <
DOM 1 23 g 10 5
DOM; 3 o H
Muon Track 4 v
. 0.5 10710
° ® —o.7 -
~1.00 107"
~1.00 —0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00
True cos(fzcnin)
(a) DOM strings sketch (b) Zenith angle reconstruction based on

Figure 2: Motivations of our work and limitations of previous works

2 Motivations

In an event, the light can activate a small number of DOMs, which output the information about
the energy and time of the interaction. Because of the sparseness of active sensors for low-energy
events and the irregular sensor geometry, previous methods based on convolutional neural network
(CNN) have confronted difficulties [6], while GNN is more suitable in this situation. Given the
x,y, z coordinates of each DOM activated by the event, they can be formed as a geometric graph
first. GNN can then be applied to generate a representation vector of this graph for predicting the
event information like its type and energy as a classification task.

However, existing GNN-based methods [6}, [T] mostly focus on the second graph classification
component and omit the importance of the first graph construction step. One calculates the pairwise
Euclidean distance and uses the result to connect k nearest neighbors [6]]. Another applies a Gaussian

kernel to the pairwise distances d;; = e~z llei—z;|*/o [1]. These vanilla construction methods
leave out many factors. In [II, the learnable parameter o is the only parameter in this network,
so it is sensitive to noise. Moreover, it considers active DOMs in each event as different graphs,
resulting in unstableness and difficulty while training. Besides, they fail to take factors other than
pairwise distance into consideration. In Figure 2|fa), DOMs are arranged in hexagonal distribution so
the distances between DOM; DO M5 and DO My DO M; are the same, leading to the same edge
weights using [1]. So since the weights reflect the influences between nodes, DOMj5 and DO M,
have the same impact on DO M5 in this model. However, DOM> and DO M3 are supposed to
share more information because the muon track passes between them. Furthermore, because of the
symmetry properties of Gaussian kernel, the graph constructed in the previous model [[7]] remains

DOM information

Sure euje \ur
| W, W,
_Wllay;(ﬂ‘ annealed
Langevin
dynamics
MLP SInokn GCN —> Pooling '— Output

. X }—>\GCN\—>| }—>\GCN\—>| X; }—>\GCN\—>| Xz floe fedieee

X
Graph Generation Graph Classification

Figure 3: Model structure

roughly the same even if zenith angle varies, so it does not achieve satisfying performance in zenith
angle reconstruction. Our initial empirical experiments demonstrate this issue in Figure 2|(b) as most
of the predictions of incident angle deviate from the ground truth.

We hold the assumption that graph structure is vital to this task. Motivated by [7, 9], we focus on graph
generation to open up improvement space for the following graph classification and reconstruction
task. We generate the edge automatically, learning from information obtained by DOMs. We will
illustrate it thoroughly in Section[3] We also include all the DOMs in this graph, so the number of
nodes does not change, stabilizing the training process.

3 Model Architecture

This model has two main components: graph generation and graph classification. We will train the
two steps together. If the network outputs a binary label between signal and background as a graph
classification problem, we use the cross-entropy loss. If it is a graph regression problem to predict
values like zenith angle in the event reconstruction problem, we apply the mean squared error (MSE)
loss.

3.1 Graph generation step

Node features are initialized with the given information of each DOM, including the z, y, z position
of its corresponding DOM, the sum of charge in the first pulse within the sensor, the sum of charge in
all pulses within the sensor, and the time at which the first pulse crosses the activation threshold. As
for initialization, the node features of active DOMs are their corresponding information and inactive
ones are padded with zeros.

Score-based models [9] are introduced to avoid limitations in previous generative modeling techniques.
The advantage is that they do not require normalization and can be learned directly in contrast to
common likelihood-based generative models. Inspired by EDP-GNN [7], we apply score-based
models to generate edge weights W of the graph formed by all the DOMs based on the gathered
information from the detectors. The generated weighted graph lays the foundation for the downstream
graph classification or regression task.

Naive score-based generative model. We hold the assumption that the final constructed graph with
edge weights W follows a latent true distribution p(W). We will train a parameterized GNN model
Sp to approximate the scores of p(W'), which is defined as the gradient of the log-density function
Vw log p(W). By Langevin dynamics procedure, we can obtain samples from data distribution p(W)
using only its score function V- log p(W) so sy is trained by minimizing the Fisher divergence

Epw) [V log p(W) — so(W)][3-

Noise conditional score-based generative model. However, the estimated score functions in the
naive score-based generative model are inaccurate in low-density regions. So we can use a series of
Gaussian noise {o; }M, to perturb W to get W and populate these regions. We now train a noise
conditional score-based model sg(W, 0;) to capture Vyy log g, (W). And we use the weighted
average loss of every noise scale to update the aforementioned Fisher divergence as follows,

Loss(0) = o= ZU By v |yl — s (W,)2)

To remove the expectation symbol in Eq. (1)) for implementation, we sample edge weights matrix W
from p(W) = q,, (W) with annealed Langevin dynamics from [9]. We also propose a GNN-based
model to parameterize sy(W, 0;) as shown in Figure As for the input, we connect all the active
DOMs, which means the entity in the adjacency matrix W equals one when the end-points of this
edge are both active. We use Graph Convolutional Network (GCN) to update node features X *+1

using X and edge features W by
X*+1 = ReLU(D2 AD ™2 X W),

We use multilayer perceptron (MLP) to update edge features 1, using W*~! and updated node
features X* as

k—1 k k ; ;
— {MLP(CONCAT(Wij L XEXF)) i< @

K wj, otherwise -

Because W is symmetry, we only update the upper triangular matrix and copy it to the lower triangle.

The output is a N x N score matrix, approximating the true score of p(W'). We use this score matrix

to sample the final edge weights W via Langevin dynamics (Appendix D with the noise level
being set to zero.

3.2 Graph classification step

We still apply another GCN on the constructed graph from the last step with the initial node features

X and the generated edge weights W. The network outputs graph-level representation by summing
the IV nodes’ features and then uses logistic regression to predict the final class.

4 Experiments

4.1 Datasets and baseline models

Event classification. The primary goal of the event classification task in the IceCube Experiment [[1]]
is to separate the signal (muons from neutrinos, positive samples) from the background (muons from
cosmic-ray shower, negative samples) based on the event information observed and collected on
each DOM. Therefore, it is a binary classification problem at the graph level. We use the existing
simulated Monte Carlo dataset [1]] and the background event is many orders of magnitude larger than
the signal event. We choose the train/validation/test split as 18,937/7,381/7,890 for the signal event
and 82,118/29,813/7,890 for the background event. Note that we make the signal-to-background-ratio
or signal-to-noise-ratio (SNR) consistent with the true distribution in the training and validation
dataset while maintaining a 1:1 SNR on the test dataset to avoid an extremely low false-positive
rate. We compare our method against two GNN-based models. One is a vanilla GNN model on the
constructed Gaussian kernel graph [[1]] and the other is the state-of-the-art model called TAGCN on
the constructed kNN graph [[6]. The hyperparameters in both baselines are set as suggested in the
original papers.

Event reconstruction. We can further reconstruct the selected track event by predicting its key
parameters of interest, the zenith angle 6 of the arrival direction, and the neutrino energy E after
finishing the previous event classification task to remove all the background events. So it is a graph
regression problem to predict a real value. We still use the same Mote Carlo simulation data [[6] with
the mixture of muon (v,,) and tau (1) interaction events. We neglect the event topology here because
we only focus on track-like events, and all other events such as cascade-like events are filtered during
the event classification task. We only employ the state-of-the-art TAGCN model [6] as the baseline
here since the other Gaussian kernel graph performs much worse on this task, which is discussed
earlier in the introduction section.

4.2 Results and analysis

Event classification. Figure demonstrates the receiver operating characteristic (ROC) curve for
the event classification task for our method and the other two GNN-based models. By fixing a 1:1

~—— Vanilla GNN ROC curve (area = 0.752)
—— SOTAROC curve (area = 0.762)
—— Ours ROC curve (area = 0.793)

08 10 10 —075 050 025 000 025 050 075 0 10° 10 107 10

0.0 02 0. 06
False Positive Rate True os(0-cniin) True Energy (GeV')

(a) Receiver operating characteristic (b) 1D slice distribution of the differ- (c) 1D slice distribution of the re-
curve with area under curve (AUC) ence between reconstructed and true constructed energy value vs. true
for event classification. zenith angle vs. true zenith angle energy value

Figure 4: Experimental results on the event classification (a) and event reconstruction (b)(c) tasks

SNR on the test dataset, clearer differences among these three models can now be displayed in terms
of the ROC curve. We can see that the ratio between true positive rate and false-positive rate for all
the thresholds in the final predictive confidence is improved with our proposed method, leading to a
significantly larger area under the ROC curve (AUC).

Event reconstruction. For both the reconstruction task with respect to the zenith angle and energy,
we show the satisfactory results in Figure [4|{b) and Figure respectively. The true energy ranges
from 1 GeV to 1,000 GeV, and we use the logarithm value of the original energy in base 10 for
training and testing to circumvent the potential bias towards the events with higher energy. It is worth
noting that the 68% bands of the reconstructed events by our method are generally more constraining
and centering around the benchmark lines than those generated by the baseline SOTA model. The
benchmark lines are formed by samples with zero reconstruction error as the horizontal black dashed
line and the diagonal black dashed line in Figure f[b) and Figure respectively. Moreover, we
believe the distorted shapes of the bands for the energy reconstruction in Figure arises from the
prediction bias caused by the unbalanced distribution when the energy value is too low (10 GeV) and
the energy transfer phenomenon [8|] when the energy value is too high (1,000 GeV).

5 Conclusion

Because the sensors in IceCube experiments are arranged irregularly and active ones are sparse for
low-energy events, we employ GNN in this domain. To classify and reconstruct events, we focus on
the graph generation component to improve the following graph classification and reconstruction task.
We employ a score-based generative model to construct the graph automatically, learning from the
dataset. Furthermore, the outstanding experiment results verify our assumption that graph generation
is vital for the performance of the following GNN. Our method achieves a better performance but
involves more parameters. We can use the model compression technique to improve training and
predicting speed in the future.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their comments. The work described in this
paper was partially supported by the National Key Research and Development Program of China (No.
2018AAA0100204) and CUHK 2410021, Research Impact Fund (RIF), R5034-18.

References

[1] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi, Prabhat,
Wahid Bhimji, Michael M. Bronstein, Spencer R. Klein, and Joan Bruna. Graph neural networks
for icecube signal classification. In ICMLA, pages 386-391. IEEE, 2018.

[2] Erik Ganster, Richard Naab, and Zelong Zhang. A Combined Fit of the Diffuse Neutrino
Spectrum using IceCube Muon Tracks and Cascades. arXiv e-prints, page arXiv:2107.10003,
July 2021.

[3] Mirco Hiinnefeld. Combining Maximum-Likelihood with Deep Learning for Event Reconstruc-
tion in IceCube. arXiv e-prints, page arXiv:2107.12110, July 2021.

[4] Yang Lyu. Characterization of the PeV astrophysical neutrino energy spectrum with IceCube
using down-going tracks. arXiv e-prints, page arXiv:2107.14298, July 2021.

[5] Jessie Micallef. Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events.
arXiv e-prints, page arXiv:2107.11446, July 2021.

[6] Martin Ha Minh. Reconstruction of Neutrino Events in IceCube using Graph Neural Networks.
arXiv e-prints, page arXiv:2107.12187, July 2021.

[7] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In AISTATS,
volume 108 of Proceedings of Machine Learning Research, pages 4474-4484. PMLR, 2020.

[8] Xavier Rodrigues, Anatoli Fedynitch, Shan Gao, Denise Boncioli, and Walter Winter. Neutrinos
and ultra-high-energy cosmic-ray nuclei from blazars. The Astrophysical Journal, 854(1):54,
2018.

[9] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data
Distribution. arXiv e-prints, page arXiv:1907.05600, July 2019.

[10] Shiqi Yu. Direction Reconstruction using a CNN for GeV-Scale Neutrinos in IceCube. arXiv
e-prints, page arXiv:2107.02122, July 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , Or
[N/AT . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Sectionﬂ]

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Did you describe the limitations of your work? [Yes] See SectionE]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A |

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 4]
and Appendix

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section[z_f] and Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] See Section 4]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Appendix

A.1 Annealed Langevin dynamics

We train a series of noise conditional score networks sy (1, 0;), and use annealed Langevin dynamics

to generate samples. We first initialize Wy with folded normal distribution. Then we use a series of
noise conditional score-based models sy (W, o;) where the noise scale o; is in descending order, and

run Langevin dynamics for 7" steps in each model. Notice that every W is supposed to be symmetric,
so we only update the upper triangular matrix and copy to the lower triangle.

Algorithm 1 Annealed Langevin Dynamics Sampling.

Input: The series of guassian noise scales, {o; i]‘il; The smallest step size, €; The number of

iteration for each noise level, T';

Output: The edge weights sample, W subject to p(W);
1: Initialize W° using folded normal distributions;

[\

AN A

~

10:
11:

) y o<
:(Wo)ij:{kj mor<y where €;; ~ N (0,1);

(W0);; otherwise’

: fori =1to M do

oy = €+ U?/J?W;
fort =1toT do
Draw A ~ N(0,1);

(W), = (W + Sy (W 00) + @A)y, ifi<j
* (Wi, otherwise’
end for
Wwo=wT,
end for
return W7,

	Introduction
	Motivations
	Model Architecture
	Graph generation step
	Graph classification step

	Experiments
	Datasets and baseline models
	Results and analysis

	Conclusion
	Appendix
	Annealed Langevin dynamics

