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Abstract

In this work we introduce group-equivariant self-attention models to address the
problem of explainable radio galaxy classification in astronomy. We evaluate
various orders of both cyclic and dihedral equivariance, and show that including
equivariance as a prior both reduces the number of epochs required to fit the data
and results in improved performance. We highlight the benefits of equivariance
when using self-attention as an explainable model and illustrate how equivariant
models statistically attend the same features in their classifications as human
astronomers.

1 Introduction

A number of radio astronomy instruments have been and are being constructed which will produce
daunting volumes of data, for which the astronomical community is not yet fully prepared [4]. One
challenge the community faces is to classify the millions of individual objects that will be detected
by these instruments [17; 2; 7; 8]. Supervised deep learning is highly suited for many instances of
this task as the data are highly dimensional with existing labels [e.g. 6] for various types of objects
assigned by astronomers throughout the history of radio observations.

In particular, Convolutional Neural Networks (CNNs) have been researched for a number of problems
in radio astronomy, including the classification of radio galaxies [e.g. 1; 16]. To answer various
scientific questions around the physical properties of radio galaxies and the conditions through which
they form, they must first be catalogued. This requires astronomers to classify such objects into their
sub-types, in particular FRI (edge darkened) and FRII (edge brightened) radio galaxies [6]. This task
is made more challenging by noise, instrumental effects, and the substantial differences often seen
between any two individual galaxies of the same class. Consequently, interpretation of individual
model predictions is of particular interest to the astronomy community. With this in mind, [3] showed
that a feature-wise self-attention model could not only be used to make explainable predictions for an
audience of astronomers by producing attention (saliency) maps, but that it also performed similarly
to other state-of-the-art radio galaxy classifiers whilst using 50% fewer parameters than the next
smallest classic CNN application in the field.

In this work, following [3; 13], we introduce group-equivariant self-attention gates for classification of
FRI and FRII radio galaxies. Incorporating prior constraints on rotational and reflectional equivariance
is a topic of growing interest in astronomy [e.g. 5; 11; 13] where the orientation and chirality of
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astronomical systems is considered to be largely unbiased. Here we use the e2cnn package introduced
in [19] to impose group equivariance priors on our self-attention models. We impose cyclical (C;
rotation) and dihedral (D; rotation and reflection) two-dimensional Euclidean, E(2), equivariance.
Each of the equivariance priors in our model are limited to an integer number of discrete rotations,
either 4, 8 or 16 in this work, where C4 means the operations are equivariant to rotations of 0, ±π2 ,
and π radians.

2 Models

We investigate two architectures in this work. First, to allow for direct comparisons with [13], we
train a LeNet [10] style architecture without equivariance. Second, the architecture of primary interest
in this work is the self-attention model used in [3], but with a kernel size of 5 to allow for the
equivariance constraints to be modeled correctly. The equivariance of a given model is indicated as
cyclic (C) or dihedral (D), with an order of rotational symmetry, e.g. D8.

Our implementation of additive self-attention follows [14; 18] and is a feature wise transformer using
feature planes of the globally encoded output, g ∈ RCg×Hg×Wg , and a given input, x ∈ RCx×Hx×Wx .
This implementation produces an attention map, α ∈ [0, 1]1×Hg×Wg , and an attended output, y ∈
RCx×Hx×Wx , and can be summarised as

α = σ [W ◦ relu (Wx(x) + f ◦Wg(g))] , (1)
yijk = xijk · α1jk, (2)

where three 1×1-convolution operations are defined through their dimensions asW : RCk×Hx×Wx →
R1×Hx×Wx , Wg : RCg×Hg×Wg → RCk×Hg×Wg , and Wx : RCg×Hg×Wg → RCk×Hx×Wx . Ad-
ditionally, f : RCg×Hg×Wg is a (bilinear) upsampling function, relu(x) = max{0, x} is the
element-wise rectified linear unit, and we define a normalisation σ : R1×Hx×Wx → R1×Hx×Wx .
To maintain consistency with [3], the normalisation is selected to be range normalisation: σ(x) =
[x−min(x)]/[max(x)−min(x)].

Common CNN classifiers often make use of a number of wide fully connected layers at the end of
their convolutional framework [e.g. 15; 10], which are able to produce highly non-linear outputs.
For self-attention as an explainable deep learning (XAI) tool, the classifications made by the highly
non-linear fully connected layers would not be well-represented in the attention map. Therefore,
to maximise the value of the attention maps as an explanatory tool for classification, we choose to
minimise the number of parameters after the attention mechanisms. We use the fine tuned aggregation
method detailed in [3].

Training. Our models are trained on a binary version of the publicly available MiraBest2 data set
[12], which contains 1225 images of FRI and FRII galaxies (856 train, 213 validation, and 153 test
samples). Each model is trained using the Adam optimiser [9] with a learning rate of 10−5, weight
decay and mini-batching with a batch size of 16. We augment the data with rotation, reflection and
minor scaling (in the range of 0.9 and 1.1 times the image size). The model weights are updated for
each of eight random data set augmentations in a single epoch. We evaluate the model at the epoch
with the lowest validation loss.

Models3 were trained using an Nvidia A100 GPU. The selected architecture strongly influences how
long the training takes: 4 h LeNet, 14 h Attention, 19 h C4-, 20 h C8-, 33 h C16-, 16 h D4-, 37 h D8-,
110 h D16-Attention. The models we present in this work are the models within the training that
present the lowest validation loss. Therefore, training can be shortened significantly by implementing
early stopping criteria, but in our case we were interested in how the training behaved even after
validation loss began to increase again (see Figure 1).

3 Results

The performances of various models trained with different levels of equivariance are shown in Table 1.
Here we use the combined Mirabest dataset including data samples qualified as both Confident and

2Data are publicly available under a Creative Commons 4.0 license at https://doi.org/10.5281/
zenodo.4288836

3The full code is publicly available under GNU General Public License v3.0 at https://github.com/
mb010/EquivariantSelfAttention
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Uncertain and we see a significant accuracy ceiling imposed on the models through MiraBest’s
label noise. This becomes clear when considering the increased performance of models trained and
evaluated only on the Confident MiraBest labels, where for example in [13] the non-equivariant
LeNet architecture (equivalent to that trained in this work) achieved a 94% test accuracy.

Table 1: Performance metrics for all models considered in this work.

Model Accuracy (%) AUC F1 Score Precision Recall
FRI FRII FRI FRII FRI FRII

LeNet 82.9 0.905 0.821 0.836 0.832 0.827 0.811 0.846
Attention 83.8 0.909 0.819 0.854 0.894 0.800 0.755 0.916

C4-Attention 83.0 0.921 0.833 0.826 0.792 0.873 0.879 0.784
C8-Attention 82.6 0.871 0.823 0.829 0.811 0.841 0.834 0.818

C16-Attention 82.8 0.880 0.812 0.842 0.862 0.803 0.768 0.885
D4-Attention 84.1 0.889 0.828 0.853 0.870 0.819 0.790 0.889
D8-Attention 84.8 0.911 0.829 0.864 0.911 0.806 0.761 0.931

D16-Attention 81.8 0.923 0.813 0.823 0.808 0.827 0.818 0.818

Collectively the equivariant models marginally outperform the non-equivariant models. We make
special note of the D16-Attention model which performs worse than the LeNet model in all classifica-
tion metrics with the exception of the AUC, this is likely due to the severity of the D16 prior imposed
on the 5x5-kernel over smoothing the features of the source which may otherwise have been used for
classification [13]. Overall, the uncertainties associated with label noise and the test data size do not
allow for a significant separation of the equivariant models from the non-equivariant models.

To understand how the equivariant models train, we consider the training loss curves for all models,
see Figure 1. Note that the equivariant models converge towards a lower minimum in fewer epochs
within the training loss landscape. We suggest that this is because with a correctly selected prior the
models have a lower dimensional data space to map.
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Figure 1: Validation (solid lines) and training (dashed lines) loss curves for all self-attention models
listed in Table 1. The respective ’Final Model’ arrow heads highlight the respective models with the
lowest validation loss used as the final models in this work. Curves are smoothed using a rolling
window of 5 epochs, whose standard deviation is presented as the shaded region.

As an explainable AI tool, we highlight the value of equivariance for providing additional stability
and relatability in the resulting attention maps. Figure 2 highlights that attention maps which are
equivariant are easier to interpret due to their smooth features and the equivariant treatment of the
features within the image. It can be seen that the equivariant model extracts the brightest points of
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Figure 2: From left to right: The input source, followed by the respective attention maps of the
presented models in the following order: non-equivariant, C4, C8, C16, D4, D8, and D16 models
respectively. Contours show the zero level in the input to aid in identifying relevant structures, and
are dashed if the models resulting classification was incorrect.

Figure 3: Class differenced mean pixel attentions for the non-equivariant model (left) and the D8
model (right). Contours highlight regions in which the one class begins to dominate across the
augmented test set (i.e. contours highlight values at 0 for the differenced mean pixel augmented test
data values).

the respective lobes and jets of the radio source more clearly in comparison to the non-equivariant
model. However, we also note the presence of low-level residual structure in the equivariant attention
maps, with symmetry corresponding to the order of the kernel. We suggest that this may be due to
the small support of the kernels leading to discretization artifacts.

Shown in Figure 3 is the mean differenced attention between classes across the test sample, to
highlight statistical spatial differences in the attention maps. The average radial amplitude differences
in the MiraBest test data are marked as black contours on the image, and we note that although
both models highlight the central region, the non-equivariant model has a statistically significant
asymmetry in its mean attention maps, and therefore in its learned convolutional operations, which
does not reflect how an expert human classifier would approach this problem.

4 Conclusion

In this work we have explored the use of group-equivariant self-attention as a tool for radio astronomy
classification, where small labelled data sets may benefit from additional a priori constraints. We find
that equivariant models train in fewer epochs and perform slightly better than their non-equivariant
equivalents. Moreover, we find that group-equivariant self-attention models produce attention maps
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that seem to align better than their non-equivariant counterparts with the structures that would be
attended by an expert human classifier. However, we note that whilst these results are encouraging
there are a number of areas where more detailed investigations are still required. In particular a more
extensive and quantitative approach to evaluating generalisation for larger test data sets is required,
as well as an investigation into the residual structures observed in attention maps from equivariant
convolutions thought to be caused by finite kernel support.
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