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Abstract

Development of the new methods of surface water observation is crucial in the
perspective of increasingly frequent extreme hydrological events related to global
warming and increasing demand for water. Orthophotos and digital surface models
(DSMs) obtained using UAV photogrammetry can be used to determine the Water
Surface Elevation (WSE) of a river. However, this task is difficult due to distur-
bances of the water surface on DSMs caused by limitations of photogrammetric
algorithms. In this study, machine learning was used to extract a WSE value
from disturbed photogrammetric data. A brand new dataset has been prepared
specifically for this purpose by hydrology and photogrammetry experts. The new
method is an important step toward automating water surface level measurements
with high spatial and temporal resolution. Such data can be used to validate and
calibrate of hydrological, hydraulic and hydrodynamic models making hydrological
forecasts more accurate, in particular predicting extreme and dangerous events
such as floods or droughts. For our knowledge this is the first approach in which
dataset was created for this purpose and deep learning models were used for this
task. Additionally, neuroevolution algorithm was employed to explore different
architectures to find optimal models. The obtained results have better accuracy
compared to manual methods of determining WSE from photogrammetric DSMs.

1 Introduction

Reports from international organizations indicate increasingly significant problems with earths water
resources. The global demand for freshwater continues to increase at rate 1% per year since 1980s
driven by population growth and socioeconomic changes. Simultaneously, the increase in evaporation
caused increasing temperatures leads to a decrease in streamflow volumes in many areas of the world,
which already suffer from water scarcity problems. Climate warming is also responsible for globally
increased frequency of extreme hydrologic conditions. More intense and frequent precipitation events
increase the flood risk as well as heatwaves are becoming more common and last longer, resulting in
more severe droughts (UNESCO [2020], IPCC [2015]). Achieving socioeconomic and environmental
sustainability under such challenging conditions will require the use of monitoring tools that will
facilitate the management of the water resources. Traditional surface water management practices are
primarily based on data collected from networks of in situ hydrometric gauges. Point measurements
do not provide sufficient spatial resolution to comprehensively characterize river networks, and many
developing regions lack them altogether. Moreover, the decline of existing measurement networks is
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Table 1: Remote sensing small river WSE measurement error comparison. RMSE values taken from:
UAV – Bandini et al. [2020], AIRSWOT – Altenau et al. [2017]

Method RMSE (m)
UAV RADAR 0.03

AIRSWOT 0.09
UAV SfM DSM centerline 0.164

UAV SfM point cloud 0.180
UAV LIDAR point cloud 0.22

UAV SfM DSM "water-edge" 0.450

being observed all over the world (Lawford et al. [2013]). Remote sensing methods are considered
as a solution to cover data gaps specific to point measurement networks (McCabe et al. [2017]).
A leading example of remote sensing is measurements made from satellites. However, due to too
low spatial resolution, satellite data is suitable only for studying the largest rivers. E.g. SWOT
mission allows only observation of rivers of width greater than 50-100 m (Pavelsky et al. [2014]).
In this regard, measurement techniques based on Unmanned Aerial Systems (UASs) are promising
for small river measurements in many key aspects, as they are characterized by high spatial and
temporal resolution, simple and fast deployment, and the ability to be used in inaccessible locations
(Vélez-Nicolás et al. [2021]). Spatialy distributed Water Surface Elevation (WSE) measurements
are highly important, as they are used for validation and calibration of hydrologic, hydraulic or
hydrodynamic models to make hydrological forecasts, including predicting dangerous events such
as floods and droughts (Langhammer et al. [2017], Tarpanelli et al. [2013], Jarihani et al. [2013],
Domeneghetti [2016], Montesarchio et al. [2014])

Photogrammetric Structure from Motion (SfM) algorithms are able to generate Orthophotos and
Digital Surface Models (DSMs) of terrain based on multiple aerial photographs. Photogrammetric
DSMs are precise in determining the elevation of solid surfaces to within a few cm (Ouédraogo
et al. [2014], Bühler et al. [2017]). However, they do not correctly represent the water surface. This
is related to the fact that general principle of SfM algorithms is based on automatic search for a
distinguishable and static terrain points that appear in several images showing these points from
different perspectives. The surface of the water lacks such points as it is uniform, transparent and
in motion. Due to water transparency, DSMs created using SfM algorithms typically indicate pixel
elevations below the actual water surface level. For very clear and shallow streams, photogrammetric
DSMs represent the river bottom (Kasvi et al. [2019]). For opaque waters, photogrammetric DSMs
are disturbed by artifacts caused by water uniformity (lack of distinguishable photogrammetric
key-points). Woodget et al. [2014], Javernick et al. [2014] and Pai et al. [2017] demonstrated that it is
possible to read the WSE from photogrammetric DSM at shorelines ("water-edge") where river is
very shallow, so there are no undesirable effects associated with light penetration below the water
surface. However, Bandini et al. [2020] proved that this method gives satisfactory results only for
unvegetated and smoothly sloping shorelines where the boundary line between water and land is easy
to define. For this reason, this method is not suitable for universal automation. Table 1 shows the
RMSE errors of existing Remote Sensing methods for measuring water levels in small rivers.

The aim of this work was to develop a new automatic method based on deep neural networks allowing
estimation of small rivers WSE from photogrammetric DSMs and Orthophotos with an accuracy
outperforming previous methods based on manual analysis of photogrammetric data.

2 Dataset

A brand new dataset has been prepared for the purpose of this work. It consists of 260 samples,
each corresponding to a 10 by 10 meter area that encloses small river water body and nearshore land.
Subjected rivers have width ca. 2-3 m. They are overhung by sparse deciduous trees. The banks
and riverbed are overgrown with rushes that protrude above the water surface. The banks are steeply
sloping at angles of ca. 50° to 90° relative to the water surface. Data were collected during different
seasons, so individual samples differ in vegetation stage. There are marshes nearby, with river water
flowing into them in places. Additionally, the dataset was supplemented with photogrammetric data
from surveys made by Bandini et al. [2019]. See the cited publication for details on this river case
study: Bandini et al. [2020]. Dataset samples were divided into a training and testing subset at a
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ratio of 8:2. Dataset is available to download at https://doi.org/10.5281/zenodo.5257183
(Szostak et al. [2021]). Every sample includes:
• Photogrammetric orthophoto. Raw photogrammetric data. True color image represented as a

3× 256× 256 array (3 channel image of 256× 256 pixels).
• Photogrammetric DSM. Raw photogrammetric data. Contains disturbed water surfaces. Corre-

sponds to the area presented on the orthophoto. Stored as a 256× 256 array containing elevations
of pixels expressed in m MSL.

• WSE. Ground truth Water Surface Elevation as single value expressed in m MSL.
• Photogrammetric DSM statistics. Mean, standard deviation, minimum and maximum values of

the photogrametric DSM array. They can be used for feature scaling. Represented as single values
expressed in m MSL.

Example visualization of the orthophoto and DSM from the sample is shown in Figure 1.

(a) (b)

Figure 1: Visualisation of geospatial data from single dataset sample. (a) – photogrammetric
orthophoto, (b) – photogrammetric DSM with water surface disturbances.

3 Deep Learning

3.1 Feature scaling

Input data is subjected to feature scaling before it is fed into the model. DSMs values were standard-
ized according to the equation DSM ′ = DSM−DSM

2σ , where DSM ′ – standardized sample DSM
2D array with values centered around 0, DSM – raw sample DSM 2D array with values expressed in
m MSL, DSM – mean value of single subjected DSM array, σ – standard deviation of DSM array
pixel values from the entire dataset. This method of standardization has two clear advantages. Firstly,
by subtracting the average value of a single subjected sample, standardized DSMs are always centered
around zero, so the algorithm sees no difference between samples of the rivers located at regions of
different altitudes. The actual water level information is recovered during inverse standardization.
Secondly, dividing all samples by the same sigma value of entire dataset, ensures that all standardized
samples are scaled equally. It was experimentally found that multiplying the denominator by 2 results
in better model accuracy, compared to standardization that does not include this factor. Orthophotos
were standardized using Imagenet (Deng et al. [2009]) dataset mean and standard deviation according
to the equation ORT ′ = ORT−µ

σ , where ORT ′ – standardized 3-channel orthophoto RGB image 3D
array with values centered around 0, ORT – 3-channel orthophoto RGB image 3D array represented
with values from the range [0,1], µ = [0.485, 0.456, 0.406] – 1D vector containing mean values of
each of RGB channels from Imagenet dataset, σ = [0.229, 0.224, 0.225] – 1D vector containing
standard deviation values of each of RGB channels from Imagenet dataset.

3.2 Models

The model used to create the supervised learning algorithm for determining a single WSE value
is based on the VGG-16 architecture (Simonyan and Zisserman [2015]). Several variations of this
model have been tested based on neuroevolution architecture search (see section 3.3). The VGG-16
and ResNet were a baseline models.
a VGG-16 Base Model. VGG-16 originally used for image classification was modified to perform

single floating point value prediction. The changes made to this model are: i) the input size of the
model is 4x256x256. It is a four-channel image in which the first channel contains the DSM and
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the other three channels are RGB orthophoto channels. ii) After a series of convolution layers, a
linear transformation of the array data to a single value was applied. No activation function was
used on the model output to obtain a floating point value.

b Multiresolution VGG-16. VGG-16 Base Model (a) enhanced with multi resolution achieved by
concatenation of scaled four-input channels to the output of each max pooling layer.

c VGG-16 with four CONV blocks - VGG-16 without last three convolutional layers with changed
activation function.

d VGG-16 with three CONV blocks - VGG-16 without last six convolutional layers with mutated
activation function.

e VGG-16 with five CONV blocks - VGG-16 with whole feature extractor.
f Fine tuned VGG-16 - best pretrained VGG-16 fine tuned by running neuroevolution with weights

mutation.
g ResNet18 - ResNet18 with different convolutional layers configuration.

3.3 Architecture search

Many of recent machine learning works has focused on solutions in which neural network weights are
trained through variants of stochastic gradient descent. An alternative approach comes from the field
of neuroevolution, which harnesses evolutionary algorithms to optimize neural networks, inspired by
the fact that natural brains themselves are the products of an evolutionary process (Faber et al. [2021],
Ma et al. [February 2021], Stanley and Miikkulainen [2002], Miikkulainen et al. [Mar 2017], Sun
et al. [Oct 2017], E. Galvan [Jun 2020]). In presented work we have set up a neuroevolution based
algorithm which can run search through different architectures and modifications of baseline models
VGG or ResNet. The sizes of population in our experiments was 16 (eq.1, eq. 2). The number of
iterations is in range from 20 to 40. The population is set of the models with different initial random
weights ((eq.1, eq. 2)).

P = {F iΘ,Θ = {θ0, θ1, ..., θN} ∧ i ∈ {1, 2, ..., population_size}} (1)

F iΘ(x) = f iθN (f iθN−1
...(f iθ0(x)))→ level_prediction (2)

Our implementation consists of mutation operator which can change length of the model F iΘ or
internal parameters of chosen layer f iθl_id

like number of input channels or kernel size (eq.3, eq.4
and eq.5).

m : Parent× layer_id→ Child (3)

m(F iΘ, l_id)→ F i
′

Θ (4)

F i
′

Θ (x) = f iθN (f iθN−1
...f i

′

θl_id
...(f iθ0(x))) (5)

After each iteration the best solutions are chosen and form new generation for the next one. In each
iteration models are trained with gradient descent in 5 epochs. Additional step is neuroevolution based
fine tuning which run mutation operation on a population of gradient descent pretrained networks
and evaluates them on training dataset. Each single mutation perturbates some small percentage of
weights (1-2%). Finally, best models are tested on a validation dataset.

4 Results and future works

The results are shown in Tab. 2. The models listed in table are those which were set manually
(VGG-16 Base Model, Multiresolution VGG-16 Base Model) and other which were generated by
neuroevolution search. In parentheses there are combinations of the number of channels for successive
blocks inside the models. In the rows where these numbers are not given, the number of channels
in the blocks is the same as in the original version of the model. In It is shown that neuroevolution
search improved accuracy of water level prediction. Our fine tuning approach decrease further the
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prediction error. It is worth to mention that our best deep learning models outperform other manual
methods of determining WSE from photogrammetric DSMs and are close to the accuracy of the more
complicated and expensive AirSWOT method (Tab. 1). The future work will concentrate on further
model exploration using more sophisticated neuroevolution, including Vision Transformer based
feature extractor (Dosovitskiy et al. [2020]), ResNeSt (Zhang et al. [2020]) etc. The neuroevolution
algorithm will be incorporated with crossover, clustering, hyperparameter optimization (Faber et al.
[2021]) and multiresolution options. Especially model topology will be more explored, not only
individual layers will be evolved but the internal network topology. Also Bayesian estimation of
uncertainty and models sensitivity analysis will be performed (Gal and Ghahramani [2016]).

Table 2: Deep learning models prediction accuracy
Model RMSE [cm]

Fine tuned VGG, 5 blocks with LeakyReLU 9.89
VGG, 5 blocks with LeakyReLU (66,146,176,222,222) 10.01

VGG, 3 blocks with ReLU 10.44
Multiresolution VGG-16 Base Model 10.50

VGG, 4 blocks with LeakyReLU (84,137,258,497) 11.18
VGG-16 Base Model 11.69

Resnet18 Model (42, 193, 293, 579) 14.13
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