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Abstract

Computational fluid dynamics (CFD) is an invaluable tool in modern physics but
the time-intensity and computational complexity limit its applicability to practical
problems, e.g. in medicine. Surrogate methods could speed up inference and
allow for use in such time-critical applications. We consider the problem of
estimating hemodynamic quantities (i.e. related to blood flow) on the surface of
3D artery geometries and employ anisotropic graph convolution in an end-to-end
SO(3)-equivariant neural network operating directly on the polygonal surface
mesh. We show that our network can accurately predict hemodynamic vectors for
each vertex on the surface mesh with normalised mean absolute error of 0.6 [%]
and approximation accuracy of 90.5 [%], demonstrating its feasibility as surrogate
method for CFD.

1 Introduction

Computational fluid dynamics (CFD) has been successfully used in many fields of physical science.
Advances have been made to leverage the powerful tool to gain insight into blood flow in human
arteries and provide doctors with hemodynamic biomarkers to aid them in patient treatment. For
instance, arterial wall shear stress (WSS) has been found to correlate with plaque development
and arterial remodelling [13} [7] which can lead to atherosclerosis and ultimately, death, but can
in some cases be prevented by e.g. stent placement. To inform appropriate treatment, doctors are
however rarely interested in overly precise hemodynamic quantities but usually seek qualitative
evaluation. Slightly lower accuracy might be acceptable at greatly increased efficiency for many
practical purposes. Thus, clinical practice could benefit greatly from surrogate methods for the
time-consuming CFD.
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Figure 1: Sample predictions of a gauge-equivariant mesh graph convolutional network (GEM-
GCN) on unseen geometries from the single artery and bifurcation datasets. Ground truth obtained
by CFD. Given an input surface mesh, the GCN predicts vector-valued WSS for each mesh vertex.

CFD in arterial geometries require the extraction of polygon meshes from medical images [9,10]. Our
key observation is that every mesh consists of vertices ) and faces F which induce a graph G = (V, £)
and that this graph is naturally suited for use with graph neural networks. However, previous work
using deep learning to predict hemodynamic quantities has employed hand-crafted parametrisation
of the artery surface [}, to match conventional convolutional neural networks. Supporting our
intuition, Morales et al. [4]] recently showed that GCNs outperfom previous approaches for the
prediction of scalar hemodynamic potentials in the left atrial appendage.

While widely used message passing graph convolutional networks (GCN) like GraphSAGE [6]
are generally isotropic, recent works propose more expressive anisotropic convolution filters [2} [3].
Furthermore, in geometric deep learning [ 1] symmetry considerations have been used to boost the
performance of deep neural networks. These allow the models to make equivariant predictions that
adapt to spatial orientation of the input, removing the need for shape registration in arterial geometries
and boosting data efficiency. In medicine, patient data is notoriously hard to come by and efficiently
making use of it is crucial. Leveraging these recent advances, we design an anisotropic GCN to be
equivariant under SO(3) transformation, i.e. rotation in 3D Euclidean space. We apply our model
to two datasets of synthetic coronary arteries and train it to predict vector-valued hemodynamic
quantities by regression on the ground truth obtained from CFD.

2 Method

We cascade graph convolution and pooling layers in a three-scale U-Net [[12] residual architecture
which is depicted in Figure [2] These models are trained using regression on ground truth labels
obtained by CFD to predict vector-valued quantities on the vertices of an input mesh.

2.1 Anisotropic message passing

In order to realise graph convolution via message passing with anisotropic convolution filters, we
employ gauge-equivariant mesh convolution layers [3] on the mesh graph G = (V, &):

(KL K2Co)* =t K' 4 > plp,a)fe- K2 (p, ), peV ()

q€N(p)
where K1, K%(p,q) € Ré*¢i+1  f:V = R%, f, = f(p),p € V, p(p,q) € R%*%_ and N(p) is
a neighbourhood around p that determines the filter support. The kernels K', K2 carry trainable

weights, f, is the feature vector associated with vertex p and p(p, q) parallel-transports feature vectors
across the mesh surface for geometrically valid linear combination.
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Figure 2: Network architecture. Non-gray vertices are used for message passing on each pooling
scale. Residual blocks consist of two convolution layers and skip connection.

Definition 1 (Anisotropy). We call a function F'(p, q), ¢ € N(p) anisotropic if it is not constant in q.
Consequently, we call a layer anisotropic, if it contains any anisotropic function.

Gauge-equivariant mesh convolution requires expressing f € X' (), R ) as a collection of tangential
signals on the mesh surface and restricting the kernel K% (p, ) so the operation is equivariant to the
tangential gauges.

In the context of graph convolution on meshes we can recover two other popular forms of message
passing from equation (I)) which are also implemented in PyTorch Geometric [3] (“PyG™). Specifically,
picking an isotropic kernel K2(p,q) = mKQ and isotropic p(p,q) =1 € {0, 1} leads to
GraphSAGE convolution [[6] while using an anisotropic, learned neighbourhood attention mechanism
p(p,q) = o(w - (fy — fp))I results in feature-steered (FeaSt) convolution [15]. We compare

performance of the three message passing algorithms in our experiments.

2.2 SO(3) equivariance

Gauge-equivariant mesh convolution layers preserve SO(3) equivariance, i.e. any rotation of an
equivariant input vector field in 3D will propagate to a corresponding rotation at the output. This is
because they define message passing and feature vectors in tangential planes to the object surface,
which rotate with the input mesh by construction. When cascading layers into a network architecture,
end-to-end SO(3) equivariance can be achieved by making sure the network’s input features are by
construction SO(3)-equivariant. We use linear combinations of relative vertex position and normal
differences as input features. Additionally, we supply the network with a sense of flow direction by
vertex-wise geodesic distances to the artery inlet.

2.3 Pooling

Graph pooling consists of graph clustering followed by feature-vector collapsing. We create a
hierarchy of n + 1 vertex subsets V° D V! O ... D V" via farthest point sampling and determine
clusters by nearest geodesic neighbours. Formally, the pooling operator v; to level 4 with clusters
C(p) forp € V'is

X(ViTLR®) — X(VE,R)

Vit foro ol X p(p,a) fas peV @
q€C(p)

Unpooling 1[) simply copies feature vectors f,, back to each cluster element ¢ € C(p).

- {X(Vi,RC) — X (Vi1 R) 3

fa = p0,0) " fo, q € C(p), peyi-l



NMAE [%] e [%] Aax [Pa] Dpean [Pa]

mean median 75th mean median  75th mean median  75th mean median 75th

SAGE-GCN 22 2.0 2.6 324 30.0 37.0 10.41 7.80 14.65 1.11 1.01 1.32

Single FeaSt-GCN 1.2 1.1 1.5 19.0 18.6 224 5.83 5.13 8.17 0.60 0.57 0.77
‘Arteries GEM-GCN 0.6 06 08 99 95 116 394 368 546 032 031 041
::”df e SAGE-GCN 105 96 128 1492 1281 1812 2673 2396  36.17 531 484 650
FeaSt-GCN' 8.3 7.5 10.1 123.7 111.1 152.9 25.63 2293 34.52 4.22 3.82 5.13

GEM-GCN' 0.6 0.6 0.8 9.8 9.4 114 3.80 3.39 5.53 0.32 0.31 0.42

SAGE-GCN 1.3 1.1 1.5 24.4 21.1 27.3 4.38 4.14 5.50 0.27 0.22 0.29

Bifurcating FeaSt-GCN 1.2 0.9 1.3 20.7 18.1 22.3 4.10 3.72 4.77 0.23 0.19 0.25
Arteries GEM-GCN 13 L1 16 233 204 286 399 371 464 027 022 032
e SAGE-GCN' 73 69 96 1174 1152 1513 860 829 1010 145 137 191
FeaSt-GCNT 74 74 10.1 119.6  117.1 161.1 8.39 8.33 9.78 1.48 1.47 2.01

GEM-GCN' 1.3 1.1 1.6 233 20.9 28.5 4.00 3.67 4.65 0.26 0.22 0.32

fevaluated on randomly rotated test samples

Table 1: Prediction accuracy on held-out test splits for two datasets of synthetic coronary arteries
with single output and bifurcation. Ground truth labels are obtained via CFD.

On each pooling scale p € V* we define neighbourhoods N (p) based on radius 7 in Euclidean space
so that

N(p) ={qeV'|lp—ql2 <7}, peV 4)

Subsequently we connect p to all ¢ € N (p) which results in a hierarchy of graphs G = (V?, £*). The
constructed neighbourhoods N (p) define convolution filters with fixed spatial support. Because of
this, we are able to process input meshes with heterogeneous mesh size. For pooling and unpooling
to be applicable for FeaSt convolution architectures we choose p(p, q) = p(p, q) ! = 1 in equations
@) & (3). Our implementation is available online. [[]

3 Numerical experiments

We train GCNs consisting of the three convolution types by mean-squared-error regression using
Adam optimiser on two datasets of 2 x 102 synthetic coronary artery geometries each with ground
truth labels obtained via CFD. For further reference we call these SAGE-GCN, FeaSt-GCN and
GEM-GCN. The datasets consist of arteries with single inlet and outlet (ca. 8 x 10% vertices &
17 x 102 faces) or bifurcating arteries splitting in two (ca. 17 x 10 vertices & 32 x 10? faces) while
our models can be applied to either. The bifurcation dataset is randomly generated from empirical
shape distributions [11]]. All artery geometries are used to generate a domain for the solution of
incompressible Navier-Stokes equations which are solved by CFD. Blood flow boundary conditions
are fixed across either dataset. With blood velocity «, dynamic viscosity p, and surface normal 77,
WSS is defined 7 = p(Vu - 77) on the artery surface.

We argue that WSS depends in good approximation predominantly on the lumen wall topology and
flow boundary conditions latter of which are implicitly encoded in our datasets. This is especially
valid for arteries where the vessel wall is mainly responsible for guiding the blood flow.

SAGE-GCN and FeaSt-GCN are trained on an NVIDIA GeForce RTX 3080 10 GB and GEM-GCN
on two NVIDIA Quadro RTX 6000 24 GB. Training times range from 3:00 [h] (SAGE-GCN & single
arteries) to 55:00 [h] (GEM-GCN & bifurcations) depending on the complexity of model and dataset.
After training, inference takes less than 5 [s] per shape including pre-processing. Sample predictions
are shown in Figure ]

As error metrics, we report normalised mean absolute error (NMAE) and define an approximation
error € := ||All2/||L||2- Elements of A are vertex-wise 2-normed differences between the network
output f** € X(V,R3) and ground truth label I € X(V,R3) so that A, = | f*(p) — I(p)||2
forp € V and L, = ||l,||o. Additionally, we report the maximum and mean vertex-wise normed
difference, i.e. Amax = max,{Ap} and Apean = (3-, 2p)/|V|. For scale we provide the median of

the label statistics Linax = max,, || Lp|| and Liedian = median,|| L,|| over the test sets.

"https://github.com/sukjulian/coronary-mesh-convolution


https://github.com/sukjulian/coronary-mesh-convolution

Results are shown in Table[T} The presented error metrics suggest strictly better performance on the
single artery dataset when using anisotropic convolution and pooling. On the bifurcating artery dataset
the difference in performance is less pronounced, suggesting that the choice of input feature descriptor
lacks expressiveness for the task at hand. We argue that being able to work with direction should
always benefit a GCN, unless the supplied input feature, transformed into the network’s internal
feature representation hinders inference. In this case, a more efficient proxy for the task might be
found by a less restricted GCN. We check all networks for SO(3) equivariance by randomly rotating
input samples at inference time. Rotation has a dramatic effect on the predicted WSS vectors when
SAGE-GCN or FeaSt-GCN are used, but not when GEM-GCN is used, quantitatively confirming its
SO(3) equivariance.

4 Discussion

We demonstrate how graph convolutional neural networks operating on meshes can be used as
surrogate method for computational fluid dynamics in time-critical applications. We employ novel
anisotropic graph convolution and our networks are equivariant under SO(3) transformation, leading
to improved performance and data efficiency.

The biggest limitation of our current method is the independence of boundary conditions. Boundary
conditions are a crucial element of CFD and we will investigate how we can condition GCNs in this
respect. Furthermore, quantifying prediction uncertainty seems like a logical next step. It remains to
be examined to what extent graph convolution on meshes via message passing generalises to different
discretisations of the surface mesh.

Societal impact

In general, the performance of machine learning algorithms strongly depends on their training data.
Thus is it imperative to guarantee a balanced dataset in case the algorithm will be applied in a way
that affects humans. Furthermore, surrogate methods introduce an error and if clinical decisions
should be based on them, they must provide a confidence score and quantify uncertainty.
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