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Abstract

Devising optimal interventions for diffusive systems often requires the solution
of the Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear backward partial
differential equation (PDE), that is, in general, nontrivial to solve. Existing control
methods either tackle the HJB directly with grid-based PDE solvers, or resort to
iterative stochastic path sampling to obtain the necessary controls. Here, we present
a framework that interpolates between these two approaches. By reformulating the
optimal interventions in terms of logarithmic gradients ( scores ) of two forward
probability flows, and by employing deterministic particle methods for solving
Fokker-Planck equations, we introduce a novel fully deterministic framework that
computes the required optimal interventions in one shot.

1 Introduction

Constrained diffusions and optimal control. Consider the problem of imposing constraints C
to the state of a stochastic system, whose unconstrained dynamics are described by a stochastic
differential equation (SDE)

dXt = f(Xt, t)dt+ σdWt, (1)

with drift f(x, t) ∈ Rd ×R → Rd, diffusion coefficient σ ∈ R1, and W denoting a d-dimensional
vector of Wiener processes acting as white noise sources. For a time interval [0, T ], the constraints
C may involve either terminal state XT of the system through the function χ(x) ∈ Rd → R, or its
transient state through a path constraining function U(x, t) ∈ Rd ×R → R for t ≤ T that penalises
or rewards specific regions of the state space.

One way to obtain the path probability measure Q of the constrained process is by reweighting paths
X0:T generated from Eq.(1) over the interval [0, T ]. Path weights result from the Radon–Nikodym
derivative with respect to the path measure of the unconstrained process Pf

dQ
dPf

(X0:T ) =
χ(XT )

Z
exp

[
−
∫ T

0

U(Xt, t)dt

]
, (2)

where Z is a normalising constant.

How shall we modify the system of Eq.(1) to incorporate the desired constraints C into its dynamics,
while also minimising the relative entropy between the path distributions of the constrained and
unconstrained processes?

Problems of this form appear often in physics, biology, and engineering, and are relevant for
calculation of rare event probabilities [1, 2], latent state estimation of partially observed systems [3–
7], or for precise manipulation of stochastic systems to target states [8, 9] with applications on
artificial selection [10, 11], motor control [12], epidemiology, and more [13–18]. Yet, although

1For brevity, we restrict ourselves to state- and time- independent scalar diffusions, but the framework easily
generalises to time-dependent multiplicative noise settings with non-isotropic diffusion functions.
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stochastic optimal control problems are prevalent in most scientific fields, their numerical solution
remains computationally demanding for most practical problems.

The constrained process, defined by the weight of Eq.(2), can be also expressed as a diffusion process
with the same diffusion σ, but with a modified time-dependent drift g(x, t) [19, 20]. The computation
of this drift adjustment or control u(x, t)

.
= g(x, t)− f(x, t) amounts to solving a stochastic control

problem to obtain the optimal interventions u∗(x, t) that minimise the expected cost

J (x, t)
.
= min

u
EPg

[∫ T

0

(
1

2σ2
‖u(Xt, t)‖2 + U(Xt, t)

)
dt− lnχ(XT )

]
. (3)

The expectation EPg is over paths induced by the constrained SDE dXt = g(Xt, t)dt+σdWt. (4).
The first term in Eq.(3) results from minimising the Kullback-Leibler divergence between the path
measures induced by the unconstrained and the constrained processes [21].

Finding the exact optimal controls for general stochastic control problems amounts to solving the
HJB equation [22], a computationally demanding nonlinear second order PDE. However, control
problems characterised by the cost of Eq.(3), known as Path Integral- or Kullback-Leibler-control
(PI/KL-control)[4, 8, 21, 23], admit a simpler solution. For this class of problems, the logarithmic
Hopf-Cole variable transformation [24], ie. J (x, t) = − log(φt(x)), linearises the HJB equation [8],
and the optimally adjusted drift becomes

g(x, t) = f(x, t) + σ2∇ lnφt(x), (5)

where φt(x) is a solution to the backward linear PDE

∂φt(x)

∂t
+ L†fφt(x)− U(x, t)φt(x) = 0, (6)

with terminal condition φT (x) = χ(x), and L†fφt(x)
.
= f(x, t)∇ · φt(x) + σ2

2 ∇
2φt(x) denotes the

adjoint Fokker–Planck operator acting on φt(x).

The PDE of Eq.(6) is often treated either with grid based solvers [25, 26], or with iterative stochastic
path sampling frameworks [8, 21, 27–29]. Both approaches suffer, in general, from high computa-
tional complexity with increasing system dimension. (However note recent neural network advances
towards this direction [30, 31].)

2 Method

Constrained diffusion densities from backward smoothing. To avoid directly solving the back-
ward PDE (Eq. (6)), we view the marginal density qt(x) of the constrained process as the smoothing
density in an inference setting. By considering Eq.(2) as a likelihood function, and treating the
costs U(x, t) and χ(x) as continuous time observations of the process Xt, the path measure Q, i.e.
the product of the a priori distribution Pf with the likelihood, can be interpreted as the posterior
distribution over paths that account for the observations as soft constraints. Thus, drawing inspiration
from forward–backward smoothing algorithms for hidden Markov models [32, 33], we factorise the
marginal density into two terms that account for past and future constraints separately

qt(x) ∝ ρt(x)φt(x). (7)

The density ρt(x) satisfies the forward filtering equation with initial condition ρ0(x) (Eq.(8)),

∂ρt(x)

∂t
= Lfρt(x)− U(x, t)ρt(x), (8)

while the marginal constrained density qt(x) fulfils a Fokker–Planck equation (Eq.(9))

∂qt(x)

∂t
= Lgqt(x). (9)

Here the Fokker–Planck operator Lg is defined for the process with optimal drift g(x, t) (Eq.(5)).

By replacing φt(x) with qt(x)/ρt(x) in Eq.(5), we obtain a new representation of the optimal drift in
terms of the logarithmic gradients (score functions) of two forward probability flows, qt(x) and ρt(x)

g(x, t) = f(x, t) + σ2
(
∇ ln qt(x)−∇ ln ρt(x)

)
. (10)
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This formulation still requires knowledge of the unknown∇ ln qt(x). Yet, by inserting Eq.(10) into
Eq.(9), and introducing a time-reversion through the variable τ = T − t, we obtain a Fokker–Planck
equation for the flow q̃τ (x) = qT−τ (x)

∂q̃τ (x)

∂τ
= −∇ ·

((
σ2∇ ln ρT−τ (x)− f(x, T − τ)

)
q̃τ (x)

)
+
σ2

2
∇2q̃τ (x), (11)

that depends only on the time-reversed forward flow ρt(x), with q̃0 ∝ ρT (x)χ(x). Thus, for the
exact computation of the optimal controls u∗(x, t) = σ2

(
∇ ln q̃T−t(x)−∇ ln ρt(x)

)
, we require

the logarithmic gradients of two forward probability flows q̃T−t(x) and ρt(x).

optim
al c

ontr
ol

Figure 1: Schematic of the proposed con-
trol framework.

Deterministic particle dynamics. To sample the
two forward flows ρt(x) and q̃T−t(x) (Eq.(8) and
Eq.(9)) we employ a recent deterministic parti-
cle framework for solving Fokker–Planck equa-
tions [34], modified to fit our purposes. We ap-
proximate ρt(x) with the empirical distribution
ρ̂t(x) ≈ 1

N

∑N
i=1 δ

(
x−X(i)

t

)
constructed from an

ensemble of N "particles" X(i)
t .

For flows without path costs (U(x, t) ≡ 0), we ex-
press the particle dynamics as a system of ordinary
differential equations (ODEs) [34]

dX
(i)
t = f(X

(i)
t , t) dt−σ2/2∇̂ ln ρ̂t(X

(i)
t ) dt, (12)

where ∇̂ ln ρ̂t(X
(i)
t ) denotes the estimated score

function of the empirical distribution ρ̂t(x).

For flows with path costs (U(x, t) 6= 0), the flow
dynamics in terms of operator exponentials2 reads

ρt+δt(x) = eδt(Lf−U(x,t))ρt(x) = e−δtU(x,t)eδtLf ρt(x) +O((δt)2). (13)

We interpret Eq.(13) as the concatenation of two processes: a density propagation by the uncontrolled
Fokker–Planck equation, followed by a multiplication by a factor e−δtU(x,t). To simulate this two-
stage process for a time interval δt, we first evolve the particles following Eq.(12) to auxiliary positions
Y

(i)
t and assign to each particle i a weight Ωi(t) ∝ e−δtU(Y

(i)
t ,t). To transform the weighted particles

to unweighted ones, we employ the ensemble transform particle filter [35]. This method provides an
optimal transport map that deterministically transforms an ensemble of weighted particles into an
ensemble of uniformly weighted ones by maximising the covariance between the two ensembles.

Sparse kernel score function estimator. To estimate the scores of the flows ρt(x) and q̃t(x) for the
particle evolution (Eq.(12)) and the estimation of optimal controls u∗(x, t), we employ a sparse kernel
score function estimator [34]. More precisely, we obtain each dimensional component a ∈ [1, . . . , d]
of∇ ln ρ(x) from the solution of the variational problem of minimising the functional Iα[h, ρ]

∂α ln ρ(x) = arg min
h
Iα[h, ρ](x) = arg min

h

∫
ρ(x)

(
2∂αh(x) + h2(x)

)
dx. (14)

To regularise this optimisation we assume that h belongs to a Reproducing Kernel Hilbert Space associ-
ated with a radial basis function kernel, and employ a sparse kernel approximation by expressing h as a
linear combination of the kernel evaluated at M � N inducing points Zi, h(x) =

∑M
i=1 biK(Zi, x).

(See AppendixA.1 for the exact formulation of the estimator.)

3 Numerical Experiments

We employed the proposed method (deterministic particle flow control-DPF) on a model that can
be thought of as describing the mean phenotype (x, y) of a population evolving on a phenotypic

2In the second equality, we considered that for small δt the commutator of the two operators Lf and U(x, t)
is negligible.
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Figure 2: Deterministic particle flow (DPF) control provides optimal interventions to drive the
system to target state (grey cross). (a.) Example controlled trajectory (blue-yellow) successfully
reaches target, while an uncontrolled one (orange) remains in the vicinity of initial state for the
same time interval. (b.) Agreement between summary statistics of marginal densities estimated
from 1000 trajectories controlled by DPF (purple) and PICE (grey) (transient mean µq̂t and standard
deviation σq̂t ). Orange indicates mean and standard deviation of 1000 uncontrolled trajectories. (Used
N = 400 particles for DPF, and N = 500 for PICE to obtain the optimal controls.) (c.) Comparison
of (upper) (logarithmic) control energy, and (lower) deviation of terminal state from target for each
controlled trajectory (dots) with interventions computed according to DPF (magenta) and PICE (grey).
Light grey lines identify the mean of each quantity over the 1000 trajectories. (d.)(upper) Control
energy, and (lower) terminal error for increasing particle number N . (inducing point number for
DPF magenta: M = 50, green: M = 100 ). Grey line indicates the performance of PICE in the same
setting. (e.-h.) Same as (a.-d.) with additional path constraint U((x, y), t) = 103(y − 1)2.

landscape F under adaptive pressures f([x, y], t) = ∇F (x, y) = ∇((1 − x)2 + (y − x2)2) and
genetic drift represented by white noise [10].(See Appendix A.3 for more biological relevance.)

Starting from initial state x0 = (−1, 1), we evaluate our framework on two scenarios: one with only
terminal constraints χ(x) = δ(x− x∗), with x∗ = (1, 1) (Figure 2(a.-d.)), and one with the same
terminal constraints coupled with a path cost that limits fluctuations along the y axis (Figure 2(e.-h.)).
In both settings, we benchmark the proposed approach against the path integral cross entropy method
(PICE) [27], by comparing summary statistics, control costs ‖u(x, t)‖22, and deviations from target
‖XT −x∗‖2 of 1000 independent trajectories controlled by each framework (purple:DPF, grey:PICE).

The proposed method successfully controlled the system towards the predefined target (x∗-grey
cross) (Figure 2 a.,e.), and showed complete agreement with PICE in terms of the transient mean
and standard deviation of the marginal densities qt(x) captured by the 1000 trajectories controlled
with each framework. Comparing the control effort characterising the optimality of the interventions
(Figure 2 c.,g.), both methods dissipated comparable energy with DPF showing slightly larger variance
among individual trajectories. Nevertheless, by examining the terminal errors, DPF was consistently
more accurate and precise in reaching the target. Comparing the performance of both approaches
for increasing particle number employed for obtaining the controls, DPF delivered more efficient
controls from PICE for small number of particles (N = 500), while both methods were comparable
for increasing particle number (Figure 2 d.). These results suggest that the proposed framework
delivers equally optimal controls with PICE in one shot, while it is also relatively more accurate in
reaching the targets.

4 Conclusions

Forward-backward algorithms for smoothing densities have been extensively used in hidden Markov
models. Here by relying on the duality between inference and control [21, 36–38], we borrowed
ideas from the inference literature to derive non-iterative sampling schemes for constraining dif-
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fusive systems. By employing score function estimation, and recent deterministic approaches for
solving Fokker–Planck equations, we proposed a stochastic control framework that relies solely on
deterministic particle dynamics. Our method interpolates between classical space-discretising PDE
solutions that are inherently non-iterative, and stochastic Monte Carlo ’particle’ methods that rely on
the Feynaman-Kac formula to obtain PDE solutions through sample paths.

Dynamical equations for diffusion processes conditioned to reach specific terminal constraints have
been already known in the field of statistical mechanics [2, 39–42] obtained from the Doob’s h-
transform [43]. The resulting effective drift from the h-transform is equivalent to the optimal drift
obtained from the Path Integral control formalism. Yet, this series of work has been mostly employed
on simple systems due the intractability of the logarithmic gradient of the backward PDE (Eq.(6)) for
more general systems.

Following the PI-control formulation, a cluster of stochastic control approaches have solved the
linearised HJB equation by low-rank tensor [44], or path integral approximations, namely Laplace
approximation [45], Monte Carlo sampling [46], or kernel embeddings [47]. Alternative approaches
have employed iterative optimisation of the controls with objectives evaluated on simulated sample
paths [1, 27–29, 48, 49].

Recent interest in score-based generative modeling that employs SDEs to perturb data distribu-
tions [18] for learning generative models of a given dataset, has triggered the development of methods
that may be viewed as solving an optimal control problem, or share elements with the work pre-
sented here. Song et al. in [18] employ score matching and a reverse time SDEs together with our
deterministic probability flow dynamics [34] to construct generative models for images. Although
this method has common ingredients with DPF, the two frameworks are built on different substrates
(neural networks vs. kernels), and for different purposes (generative modeling vs. optimal control).
In fact, in the current work we are specifically interested in extracting the optimal interventions
from the logarithmic gradients of the simulated probability flows. Similarly methods that solve the
Schrödinger bridge problem [16, 50, 51], developed in parallel with DPF, tackle the optimal transport
problem of matching two arbitrary distributions between the initial and terminal times, and may be
view as solving a stochastic optimal control problem with constraints the initial and target distribution
[52, 53].

The major limitation in applying the proposed method more broadly in higher dimensional systems
is the curse of dimensionality. The number of particles required to provide enough evidence for
accurate score estimation increases with system dimension, and more advanced methods of model
reduction shall be combined with the present work. A further computational bottleneck when path
constraints are pertinent is the computational complexity of ensemble transform particle filter algo-
rithm (O(N3 logN) [54]).Yet, there is room for improvement here by applying entropy regularised
approaches for particle reweighting [55].
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A Appendix

A.1 Score function estimator

The empirical formulation of the score estimator from N particles representing an unknown density
ρ(x) is

∂α ln ρ(x) ≈
M∑
i=1

(
M∑
k=1

Bik(x)

N∑
l=1

∇Xl
K(Xl, Zk)

)
, (15)

with Bik denoting the i-th row, and k-th column of the matrix B(x) defined as

B(x)
.
= K(x,Z)

[
λI + (K(Z,Z))−1(K(X ,Z))>(K(X ,Z))

]−1
(K(Z,Z))−1, (16)
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where X = {Xi}Ni=1 and Z = {Zi}Mi=1 denote the sets of samples and inducing points respectively,
while I stands for an M ×M identity matrix. (Here we set the regularising constant λ = 10−3). We
used an gaussian kernel

K(x, x′) = exp

[
− 1

2l2
‖x− x′‖2

]
, (17)

where the lengthscale l was set to two times the standard deviation of the particle ensemble for each
time step.

A.2 Implementation details

Here we provide the algorithm for computing optimal interventions u∗(x, t). Since the initial
conditions for the flows ρt(x) and q̃t(x) are delta functions centered around the initial and target
state, x0 and x1, i.e ρ0(x) = δ(x− x0) and q̃t(x) = δ(x− x1), we employ a single stochastic step
at the beginning of each (forward and time-reversed) flow propagation. Since the inducing point
number M employed in the gradient–log–density estimation is considerably smaller than sample
number N , i.e., M � N , the overall computational complexity of a single gradient-log-density
evaluation amounts to O

(
N M2

)
. We perform Euler integration for the ODEs, and Euler-Maruyama

for stochastic simulations. For all numerical integrations we employ dt = 10−3 discretisation step.

Algorithm A1: Deterministic Particle Flow (DPF) control
Input: N,M : scalars, number of particles and number of inducing points

t0, t1, dt: scalars, initial and final timepoints, and discretisation step
x0, x1: 1× d, 1× d initial and target state
f : drift function
σ: noise amplitude
U(x, t): function, path constraint (optional)

Output: Z,B: d×N × (t1 − t0)/dt, samples from forward flows ρt(x) and qt(x)
u∗(x, t): functions from Rd → Rd for each (t1 − t0)/dt time step, time- and

state-dependent controls
1 k = (t1 − t0)/dt // number of timesteps

// Forward propagation of flow ρt(x)

2 Zti=0 = x0 // initialise particles’ positions

3 Zti=1 = Z0 + dtf(Z0, t0) + σN (0,
√
dt) // 1st step is stochastic

4 For ti = 2 : k // deterministic propagation
5 Zti+1 = Zti + dt

(
f(Zti, t)− 1

2σ
2∇ log ρ(Zti)

)
6 If ∃ path cost U(x, t):
7 W = exp (−U(Zti+1, t) dt)
8 T ∗ = EnsembleTransformParticleFilter(Zti+1,W )
9 Zti+1 = Zti+1 · T ∗

// Time-reversed propagation of flow qt(x)

10 Bti=k = x1 // initialise particles’ positions
// 1st step is stochastic

11 Bti=k−1 = Bk − dtf(Bk, t1) + dtσ2∇ log ρ(Zk) + σN (0,
√
dt)

12 For ti = k − 2 : 0 // deterministic propagation
13 Bti−1 = Bti − dtf(Bti, t) + dtσ2∇ log ρ(Zti) + dt 12σ

2∇ log q(Bti)
// Compute u∗(x t)

14 For ti = 2 : k
15 u∗(x, ti) = σ2∇ log q(Bti)− σ2∇ log ρ(Zti)

For the numerical experiments with path constraints, we solved the optimal transport problem with
the implementation of FastEMD [56].

For some of the visualisations of our results we used the Seaborn [57] python toolbox.
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A.3 Controlling evolving populations

For an evolving population, the main evolutionary drivers comprise fitness and mutation forces that
continuously adjust the composition of phenotypes within the population, while genetic drift perturbs
the whole process stochastically. We describe the evolution of the mean phenotypes x := (x, y) of
the population by the overdamped Langevin equation

dx = C · ∇F (x)dt+ σdW, (18)

with F (x) denoting the phenotypic landscape in the presence of natural selection [58], where the
landscape axes represent different phenotypic traits, and σ the noise amplitude that rescales the
genetic drift, i.e. the stochastic term, according to the population size n and the covariance matrix
C, σ = C1/2n−1. The gradient of the landscape f(x) = C · ∇F (x) captures the adaptive pressures
under natural selection.

Here, we assume an asymmetric rugged landscape [59], that may arise in small sized populations
with small variance, and multi-modal individual fitness functions [60], supported also by empirical
findings indicating asymmetry in selection landscapes [61]. In this setting, optimal control can be
thought of as artificial selection that diverts evolving populations from strictly following natural
selection, and drives them to externally imposed target states [10]. Path constraints are essential to
prevent changes of co-varying phenotypic traits. Artificial selection to promote the prevalence of a
phenotypic trait in a population may lead to undesired variations along covarying traits. Therefore,
path constraints may be employed to reduce the fluctuations along covarying, but not targeted traits.
For simplicity we consider the covariance matrix C = I constant, given the much smaller timescales
upon which its fluctuations unfold [62], and its weak dependency on the evolutionary selection
strength [63].

The dynamics of Eq.(18) describe the evolution of populations in the presence of natural selection
towards an evolutionary optimum, captured by the maximum of the adaptive landscape, adhering
thereby to physiological and environmental constraints.

To study and understand the outcomes and dynamics of adaptive evolution, we need to devise
intervention protocols that drive phenotypes towards non-evolutionary optimum states x∗, or through
evolutionary trajectories that deviate from the gradient of the phenotypic landscape. This intervention
is implemented through artificial selection, which, following [10], we formulate here as a time- and
state- dependent perturbation u(x, t) to the natural selection

dx =
(
f(x) + u(x, t)

)
dt+ σdW. (19)
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