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Abstract

Calorimeter simulation is the most computationally expensive part of Monte Carlo
generation of samples necessary for analysis of experimental data at the Large
Hadron Collider (LHC). The High-Luminosity upgrade of the LHC would require
an even larger amount of such samples. We present a technique based on Discrete
Variational Autoencoders (DVAEs) to simulate particle showers in Electromagnetic
Calorimeters. We discuss how this work paves the way towards exploration of
quantum annealing processors as sampling devices for generation of simulated
High Energy Physics datasets.

1 Introduction

With the advent of the High-Luminosity upgrade [1] and the expected increase in luminosity, experi-
ments at the LHC are facing difficult computational challenges. A limiting factor on the precision of
physics results is the lack of detailed Monte Carlo (MC) simulation in relevant phase spaces. This
introduces a statistical uncertainty on measurements and hypothesis tests, limiting the sensitivity of
LHC experiments. At the moment, billions of CPU hours [2, 3] are used by LHC experiments for
MC simulation annually.

The simulation of particles interacting with the calorimeter system is computationally demanding.
In sampling calorimeters, particles interact electromagnetically or hadronically with dense absorber
material, resulting in a cascade of subsequent particles - a particle shower. Active layers, like
liquid Argon [4], provide energy and location measurements from electric signals proportional to the
number of particles produced in the cascade. The shower propagation and deposition of energy is an
intrinsically probabilistic process. A full physics-based simulation with the state-of-the-art toolkit
GEANT4 [5] can take minutes per event on current high-performance computing platforms [6, 7].
Approximate algorithms based on parameterizations [8, 9] have been used in many applications and
significantly decrease the runtime at the expense of accuracy. However, the developments of new
methods involving hadronic and tau-jet sub-structure information may require the complete shower
to be simulated [10], rendering such approximations insufficient.

Recent developments [11–14] suggest, that deep generative models such as Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs) are able to provide approximations to
underlying probability distributions of calorimeter shower data. Generating independent random
samples from such models is computationally cheap, thus rendering them promising candidates for
replacing parts of the default simulation framework. The ATLAS experiment has incorporated a
GAN for calorimeter shower generation in a recent update to their simulation infrastructure [14].

Inspired by these remarkable successes, we introduce a Discrete Variational Autoencoder (DVAE)
[15–17] based model with hierarchical dependencies of latent variables in the approximate posterior
and a Restricted Boltzmann Machine (RBM) latent prior. We study the qualitative performance of
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this model on an idealized calorimeter dataset [18] where electromagnetic calorimeter showers are
simulated. We demonstrate that this model tackles the challenges brought on by the non-uniformly
segmented nature of the calorimeter, dependence between energy deposits in sequential layers and
varying sparsity of the activated calorimeter cells.

Quantum Variational Autoencoders (QVAEs) [19, 20] are hybrid Quantum-Classical generative
models which may be able to exploit quantum phenomena such as superposition and tunneling in
quantum annealers to achieve better generative performance than their classical counterparts. This
work is a first step towards applying QVAEs for calorimeter shower simulation and paves the way for
future exploration and application of quantum annealing processors for generation of simulated High
Energy Physics (HEP) datasets.

2 Methodology

2.1 Dataset and Preprocessing

We use the Electromagnetic Calorimeter Shower Images dataset [18] previously studied in [12].
The dataset contains energy deposits from positrons, photons and charged pions in an idealised,
longitudinally segmented EM calorimeter. An incident particle of certain type, energy and direction
is generated and its interaction with the calorimeter material simulated using the GEANT4 10.2.0
toolkit [5] with the FTFP_BERT physics list [21–27] using the electromagnetic physics package [28].
The calorimeter is a cube of volume 480 mm3 with three non-uniformly segmented layers. The exact
geometry can be found in the appendix Table 5.

In this work, we use a flattened representation where the energy deposits in each layer are "unrolled"
and concatenated into a single feature vector for each example. The broad dynamic range of the
energy deposited in a given calorimeter cell and the differences of energy deposit scales between
different cells (e.g. cell near the middle vs near the edge of a layer) pose a challenge during training.
Standardization is a common technique which makes data features approximately standard normally
distributed, however is not suitable for highly sparse and either 0 or strictly positive calorimeter
shower data. We modify the standardization procedure to work with calorimeter shower data as
described in Appendix 6.1.

2.2 Deep Generative Models

Variational Autoencoders (VAEs) [29, 30] are a class of deep generative models that approximate
the data distribution by optimizing an evidence lower bound (ELBO), Lφ,θ(x) to the log-likelihood
of the data under the model distribution, log pθ(x) :

Lφ,θ(x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
autoencoding term

−KL[qφ(z|x)||p(z)]︸ ︷︷ ︸
kl term

≤ log pθ(x)

In the simplest case, the approximate posterior and prior over the latent variables are assumed
to be factorized Gaussian distributions, qφ(z|x) = N (z|µφ(x), diag(σ2

φ(x)) and p(z) = N (0, I)

respectively. The approximate posterior, qφ(z|x) and generative, pθ(x|z) distributions are often
parametrized using deep neural networks. The parameters φ and θ are optimized by minimizing the
negative ELBO, −Lφ,θ(x) using stochastic gradient descent.

Discrete Variational Autoencoders (DVAEs) extend the VAE framework to allow discrete variables
in the latent space [15–17]. The non-differentiability of discrete variables does not allow for the
reparameterization trick [29, 30] to be used to compute low-variance gradient estimates of the au-
toencoding term w.r.t φ. In this work, we focus on the GumBolt-DVAE model [17] which extends
the Gumbel trick [31, 32] for relaxing discrete distributions to work with Boltzmann machine (BM)
priors. In GumBolt-DVAE, continuous proxy variables ζ are used in replacement of discrete variables
z during training while the discrete variables z are used during validation and generation. The
approximate posterior has a hierarchical structure, qφ(z|x) =

∏
iqφi(zi|zj<i,x), z = [z1, . . . , zN ]

and the latent generative process is implemented by a restricted Boltzmann machine (RBM),
pθRBM(z) = e−EθRBM (z)/Zθ = ea

T
l zl+aTr zr+zTl Wzr/Zθ, where Zθ is the partition function. The

RBM parameters (al, ar,W ) are jointly trained with the parameters (φ, θ). The complete set of latent
variables predicted by the approximate posterior, z = {z1, . . . , zN} is partitioned into two equal
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subsets which form the two sides {zr, zl} of the RBM. The hierarchical approximate posterior and
RBM prior allow for rich latent space distributions and improve the generative performance of the
model [15–17].

2.3 CaloDVAE

Our simulation technique is based on the GumBolt-DVAE framework. Figure 1 shows a graphi-
cal description of our model. We employ energy conditioning in a similar fashion to [13]. The
approximate posterior distribution at a given hierarchy level i and the generative distribution are
specified as qφi(zi|zj<i,x, e) and pθ(x|z, e) respectively, where e is the true energy of the incident
particle in GeV. Fully connected neural networks (FCNNs) with ReLU activation functions are used
to parametrize qφi(zi|zj<i,x, e), i = 1, . . . , n and pθ(x|z, e). In practice, since we use a flattened
representation, the true incident particle energy, e is simply concatenated to the input feature vector.
The resulting vector, concatenated with {zj<i} is passed through a sequence of non-linear fully
connected layers to obtain approximate posterior samples zi at a given hierarchy level i. During
the autoencoding phase, approximate posterior samples {zi, i = 1, . . . , n} are concatenated with e
and passed through a sequence of non-linear fully connected layers to obtain a resampled version
of the input x. During the generation phase to obtain new samples, RBM latent variable samples
z ∼ pθRBM(z) obtained using block Gibbs sampling, concatenated with the requested incident particle
energy e, are passed through a sequence of non-linear fully connected layers.

Output masking Previous studies on the calorimeter dataset identified limitations in capturing
the layer sparsity distributions in particular for charged pions[12]. To overcome this, we introduce
stochastic discrete variables xm in the generative model where each xm,i ∈ {0, 1} determines
whether the calorimeter cell i is hit. These variables, in addition to the generated energy deposits xe
are used to produce the final output, x = xm � xe, � denotes the Hadamard product. In practice, a
hidden vector x0 is first obtained by passing either approximate posterior samples or RBM samples
concatenated with the incident particle energy through a sequence of non-linear fully connected
layers. x0 is then passed through a second set of non-linear fully connected layers to obtain xm and
xe independently. A ReLU activation function is applied to xe since ∀i, xei ≥ 0 and to encourage
sparsity [11, 12]. We use the Gumbel trick [31, 32] for discrete variables xm during training to
ensure differentiability (i.e. continuous proxy variables are used instead during training). Binary
Cross Entropy (BCE) loss applied to xm and Mean Squared Error (MSE) loss applied to x are
summed to compute the total autoencoding loss used to train the model.
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Figure 1: Graphical description of the hierarchical approximate posterior qφ(z|x, e) (left) and
generative model pθ(x|z, e) (right) to generate new synthetic samples. In the inference model (left),
continuous proxies ζi are used instead of discrete zi during training. e is the true or requested energy
of the incident particle in GeV.

3 Preliminary Results

We performed a grid search to heuristically determine the best hyperparameter setting for each particle
type. A separate model with the best hyperparameter setting is trained for each particle type and
used to produce the results. We include the details on the hyperparameter scans and settings used to
produce the following results in Appendix 6.4.

Qualitative assessment of shower images of CaloDVAE samples (Appendix 6.2, Figure 3) reveals
that a broad variety of samples are generated by our model, reproducing features such as the patterns
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of activated and non-activated cells, centrality and lateral width of the clusters, as well as longitudinal
behaviour of the shower. Of note is the behaviour in the last two layers in the pion sample, where
some of the generated showers have very little deposit in these two layers, whereas in other samples
large energy deposit is seen - a feature observed in the simulated training data. Our model also
displays good energy conditioning and extrapolation behavior beyond the energy region in which it
has been trained (cf. Appendix 6.5).

Shower shape variables are determined by the transverse and longitudinal profile of the shower,
and are useful for particle identification and energy calibration [12]. We present 1D histograms for
a subset of these variables in Figure 2 and their description in Appendix 6.3, Table 1. GEANT4
samples from the test subset of the dataset and CaloDVAE samples with e ∼ U [1, 100] GeV were
used to fill the histograms. The shower shape distributions approximately match at different scales
and in particular, layer sparsity distributions which were previously observed to be challenging are
recovered faithfully. Correct modelling of the bi-modal sparsity distribution for charged pions in
layer 1 is quite notable since they undergo both hadronic and electromagnetic interactions.

Figure 2: Shower shape variables (Appendix 6.3, Table 1) and layer sparsity (fraction of cells hit)
distributions for GEANT4 and CaloDVAE samples.

4 Discussion and Future Outlook

QVAE In QVAEs, a Quantum Boltzmann machine (QBM) [33] replaces the restricted Boltzmann
machine (RBM) implementing the latent generative process in the DVAE framework [19, 20] and
offloads the classical latent space sampling to a quantum annealer. Quantum annealers operated as
sampling devices may provide a computational advantage over Markov Chain Monte Carlo (MCMC)
techniques when using large latent-space BMs. Previous work [20] has shown remarkable success on
the MNIST and FMNIST datasets but notes that more complex datasets are required to fully exploit
the large BMs in the latent space. The successful reproduction of high level physics observables by
our model indicates that models of this class have high enough expressibility (enabled by the trainable
complex prior) to model High Energy Physics (HEP) datasets such as calorimeter showers. Therefore,

4



generative modelling of HEP datasets may benefit from using quantum annealers as Boltzmann
sampling devices. Our work provides a template for application of similar techniques to other HEP
datasets and is a necessary first step towards the exploration and application of quantum annealing
processors for generation of simulated HEP datasets.

5 Broader Impact

We considered potential negative impacts of the research presented. Indirectly, the method presented
can be used to create deceptive fake data - a concern common to most generative methods. We note
that this concern already exists with the foundational works [15–17] upon which this application
work builds. Within the presented application domain the negative impact of the work may include
production of biased simulation samples and thus affecting scientific results that rely on these samples.
This concern would also apply to any traditional or novel method of generating simulated data.

We believe the potential negative impacts are offset by the positive impacts on science and society.
If the full potential of the work presented here is eventually realized - i.e. if quantum processors
can be harnessed for the generation of synthetic data - millions of CPU years per year could be
saved that would have to be otherwise devoted to the task of simulated data generation for the
HL-LHC experiments. This saving can have enabling impact in terms of fiscal considerations, but
also will contribute to reduced environmental footprint. The sensitivity of physics analysis could
also be improved through the availability of large synthetic datasets. We also note the potential for
the development of semi-supervised methods based on the methodology presented, thus enabling
learning on real experimental data and potential reduction of systematic uncertainties in the final
physics analyses in HEP experiments.
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outlined in the ’Ethics Guidelines’ document

2. If you are including theoretical results...
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We outline the method of data pre-processing and hyperparameters
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(c) Did you report error bars (e.g., with respect to the random seed after running exper-
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the primary samples is beyond the scope of the paper. We argue that quantification
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and generally not done in similar expense. Even barring this the toy nature of the
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agreement. The scope of the paper includes only the assesment if the discrete latent
variable generative models are capapble in principle of reproducing complex physics
distributions.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [No] We did not rigorously track
resource and computing time used on the variety of assets we used for training and
evaluation of our model as this is out of scope of the current state of the study - which
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RBM - however the application of quantum processors is expected to address this.
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it is easily found by following the reference in the text.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
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6 Appendix

6.1 Dataset standardization

Applying standardization to data features makes them standard normally distributed by removing the
mean and scaling to unit variance. However, in the case of calorimeter shower data, a value of 0 for a
given cell denotes a non-hit cell. Since the raw values in our data correspond to energy depositions,
they are either 0 or strictly positive. To achieve some form of standardization while preserving the
"physical" characteristics, we scale each cell independently using the following steps.

For a given cell i, let Xi 6=0 and Xi=0 denote the sets of dataset samples in which cell i is hit and
not hit respectively. The values of cell i for samples in Xi 6=0 are standardized using mean µi and
variance σ2

i computed over Xi 6=0. Additionally, to maintain a distinction b/w samples in which cell i
is hit and not hit, we shift the values of cell i for samples in Xi 6=0 by their smallest value plus an ε
if the smallest value is negative. ε is a small positive number, e.g. 0.01. This allows to maintain a
distinction between hit and non-hit cells.

6.2 Shower images

An example in this dataset can be represented as 3 grayscale 2D images in the (η− φ) space, where η
is the beam direction in an experiment and φ is direction perpendicular to both η and z, the particle
propagation direction. The intensity of a pixel is the amount of energy deposited in the corresponding
calorimeter cell.

Figure 3: Examples of shower images of CaloDVAE samples for e+ (top), γ (middle) and π+ (bottom)
with incident particle energy e ∼ U [0, 100] GeV.

6.3 Shower Shape Variables

8



Shower Shape Variable Formula Notes

Ei Ei =
∑

pixels Ii
Energy deposited in the ith

layer of calorimeter

Etot Etot =
2∑
i=0

Ei
Total energy deposited in the
electromagnetic calorimeter

fi fi = Ei/Etot

Fraction of measured energy
deposited in the ith layer of
calorimeter

Depth-weighted total
energy, ld ld =

2∑
i=0

i · Ei
The sum of the energy per
layer, weighted by layer num-
ber

Shower Depth, sd sd = ld/Etot
The energy-weighted depth in
units of layer number

Table 1: Variables characterizing the properties of the simulated showers. [12]
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6.4 Hyperparameter Scan

We split the 100,000 GEANT4-simulated event dataset using a 80%-10%-10% split for train, valida-
tion, and test subsets, respectively. An optimal setting for the model and training parameters was
determined heuristically independently for each incident particle type. Three qualitatively different
model settings were investigated; their specifications are listed in Table 2. The models’ performances
were evaluated over a grid of training hyperparameters, summarised in Table 3. In order to determine
the best parameter sets, the distributions of shower shape variables for GEANT4 samples from the
validation subset of the dataset and CaloDVAE samples were compared using a Kolmogorov-Smirnov
(KS) test. The optimal setting selected as the one maximising the KS probability over the complete
set of shower variables.

It was observed that for all particle types the model architecture III and IV generalised best. This
indicates that additional depth in encoder and decoder, as well as an increase in dimensionality in
the latent space provides a more powerful model, capturing the underlying dataset complexity more
efficiently.

Parameter Encoder Layers Decoder Layers Hierarchy
Levels

Latent
Nodes Per
Hierarchy
Level

Model I [400, 300, 200] [200, 300, 400] 2 64

Model II [400, 350, 300, 200] [200, 300, 350, 400] 4 128

Model III [400, 350, 300, 250, 200] [200, 250, 300, 350, 400] 4 128

Model IV [500, 450, 400, 350, 300] [300, 350, 400, 450, 500] 6 150

Table 2: Different model architectures explored in the hyper-parameter scan. Each successive model
grows in complexity by adding layers in encoder and decoder, introducing additional hierarchy levels
and increasing the latent space dimensionality.

Parameter Range

Learning Rate [0.01, 0.005, 1.e−3, 10−4, 0.5× 10−4]
Epochs [25, 50, 75, 100]

Batch Size [50, 64, 75, 100, 128, 192]
Latent smoothing temp. τz [1/5, 1/7, 1/9]

Output mask smoothing temp. τxm [1/5, 1/7, 1/9]

Table 3: Grid of parameters considered for the hyperparameter optimization using the three model
definitions in Table 2. Latent smoothing temp. τz and output mask smoothing temp. τxm are
parameters of the Gumbel trick used to control the "smoothness" of the continuous proxy variables.
[31, 32]

6.5 Energy conditioning

We study the performance of energy conditioning of the model. We sample from the model requesting
specific values of true energy (1, 25, 50, 100 and 150 GeV) of the incident particle and histogram
total observed energy in the cluster. As shown in Fig 4 photon and electron clusters display sharp
peaks at the requested energy values, whereas pion samples display broadened response - however
this is due to the nature of the uncontained charged pion shower in the electromagnetic calorimeter
and not due to poor model conditioning. Note that the 150 GeV exceedes the energy range where the
models have been trained.
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Positron e+ Photon γ Charged Pion π+

Model Type Model II Model IV Model IV
Learning Rate 10−4 0.5× 10−4 10−4

Epochs 100 100 100
Batch Size 100 100 100
Latent smoothing temp. τz 1/5 1/7 1/5
Output mask smoothing temp. τxm 1/5 1/5 1/9

Table 4: Selected Models per incident particle type after heuristic evaluation of the hyperparameter
scan used to produce the preliminary results. For definitions and ranges, see Table 2 and Table 3.

Layer ∆z [mm] ∆η [mm] ∆φ [mm]

0 90 5 160
1 347 40 40
2 43 80 40

Table 5: The geometry of the calorimeter. The z-axis corresponds to the direction of particle
propagation, the η- and φ-axes are perpendicular to this [12].

Figure 4: Observed energy spectra for synthetic CaloDVAE e+, γ and π+ samples generated with
true incident energies of 1, 25, 50, 100 and 150 GeV.

11


	Introduction
	Methodology
	Dataset and Preprocessing
	Deep Generative Models
	CaloDVAE

	Preliminary Results
	Discussion and Future Outlook
	Broader Impact
	Appendix
	Dataset standardization
	Shower images
	Shower Shape Variables
	Hyperparameter Scan
	Energy conditioning


