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Abstract

We present a novel kernel-based anomaly detection algorithm for model-
independent new physics searches. The model is based on a re-weighted version of
kernel logistic regression and it aims at learning the likelihood ratio test statistics
from simulated anomaly-free background data and experimental data. Model-
independence is enforced by avoiding any prior assumption about the presence
or shape of new physics components in the data. This is made possible by kernel
methods being non-parametric models that, given enough data, can approximate
any continuous function and adapt to potentially any type of anomaly. This model
shows dramatic advantages compared to similar neural network implementations
in terms of training times and computational resources, while showing comparable
performances. We test the model on datasets of different dimensionalities showing
that modern implementations of kernel methods are competitive options for large
scale problems.

1 Introduction

Signals of new physics (NP) manifest themselves as discrepancies (excesses or deficits of events)
in collected experimental data with respect to the predictions of a “reference model", such as the
standard model of particle physics (SM). In a fully model-independent approach, data analysis should
remain agnostic about the type and nature of potential NP signatures in the data. In practice, this is
very difficult to achieve given the complexity of the experimental data in modern experiments.

We here introduce a novel anomaly detection algorithm for model-independent NP searches in high
energy physics. The basic strategy is to train a binary classifier on simulated SM data and experimental
data to reconstruct the likelihood ratio test statistics. The algorithm is based on a re-weighted version
of logistic regression with Gaussian kernels and model-independence is enforced by not making
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any prior assumption about the presence or shape of NP signatures in the data. This approach
shows dramatic advantages in efficiency, in terms of both training time and computational resources,
compared to similar implementations based on neural networks (NN) [1, 2], with comparable
performances.

The area of machine learning algorithms for model-independent searches in high energy physics
is a fast growing field of research, see for instance [3–8]. The NN model in [1, 2] share the same
statistical framework of our proposal and a similar methodology. We therefore reconstructed their
model and used it for comparison. In the machine learning literature, several approaches to anomaly
detection have been developed with different levels of supervision [9–12].

2 Designing a classifier for hypothesis testing

In this section, we present the different aspects of the algorithm proposed in this work. The basic
strategy is to train a binary classifier on a reference sample S0 of SM simulated data representing
anomaly-free behavior and on a data sample S1 of experimental measurements, to construct a
hypothesis test based on the (maximum) likelihood ratio test statistics. The goal of the test is to
determine whether to accept or reject the null hypothesis that the experimental data are drawn from
the reference distribution and do not exhibit significant anomalies.

To enforce model independence, we introduce a parameterized class of distributions pw(x|1) to
represent the alternative hypothesis. We then select the point w = ŵ that maximizes the likelihood
with respect to the experimental data at hand. The distribution pŵ(x|1) represents the specific, data
driven, alternative hypothesis while the null hypothesis is represented by the SM prediction, p(x|0).
The extended likelihood of the data corresponding to the reference distribution is given by

L(S1, y = 0) =
e−N(0)N(0)N1

N1!

N1∏
x=1

p(x|0) =
e−N(0)

N1!

∏
x

n(x|0), (1)

where n(x|0) = N(0)p(x|0) is the data distribution normalized to the expected number of events

N(0) =

∫
dxn(x|0). (2)

Compared to the usual likelihood, the extended likelihood has a Poisson factor that takes into account
the fluctuations in the number of collected events N1 (see [13]). Then, the likelihood ratio takes the
following form

t(S1) = 2 log
Lŵ(S1, y = 1)

L(S1, y = 0)

= 2 max
w

[
N(0)−Nw(1) +

∑
x∈S1

fw(x)

]
, Nw(1) =

∫
dxnw(x|1),

(3)

where we defined fw(x) = log nw(x|1)
n(x|0) . The test statistics t is itself a random variable and knowing

its distribution under the null hypothesis p(t|0), we could compute a p-value measuring the tension
between the reference data and the experimental measurements.

In order to have an effective model-independent algorithm, the model should be able to explore a
large family of distributions pw(x|1). In this work we rely on kernel methods, which are universal
approximators [14, 15] with guaranteed convergence and generalization properties [16]. They
consider functions of the type fc(x) =

∑
i cik(x, xi), where k(x, xi) is the kernel function which

measures similarity between any pair of inputs. The coefficients ci are computed via empirical
risk minimization [17] with iterative methods. The specific solver that we use in this work is part
of a public library known as Falkon [18].1 Specifically, it is a Nyström-based kernel method with
Gaussian kernels k(x, x′) = exp(‖x− x′‖2/2σ2) and L2 regularization.

The model is trained as a classifier with a loss function given by a re-weighted logistic loss that reads
as

L(f) =
∑

(x,y)∈S

[
N(0)

N0
(1− y) log

(
1 + ef(x)

)
+ y log

(
1 + e−f(x)

)]
, (4)

1https://falkonml.github.io/falkon/
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with Ny being the size of the class y. We choose this objective function because its target function is
directly the density ratio

fŵ ≈ f∗ = log
n(x|1)

n(x|0)
, (5)

which is learned with a maximum likelihood approach without having to estimate the two (possibly
multivariate) distributions individually and it is classification calibrated, therefore it outputs reliable
probabilities. In order to accurately represent the reference distribution, it is preferable to consider
a large reference sample while the size of the data sample is determined by the parameters of the
experiment, specifically its luminosity [19]. By re-weighting the loss function as in Eq.(4), we avoid
the issues related to imbalanced datasets (N0 > N1) while keeping the statistical advantage of having
a large reference sample.2 In order to reconstruct the test statistics in Eq.(3) once fŵ has been learned,
the number of expected events in the alternative hypothesis needs to be computed. From Eq.(3) and
fŵ, one can estimate Nŵ(1) using a Monte Carlo approximation over S0 as follows

Nŵ(1) ≈ N(0)

N0

∑
x∈S0

efŵ(x). (6)

Hence by learning fŵ(x) we can estimate Nŵ(1) and therefore the test statistics t(S1).

The training strategy goes as follows:

• We train the model once on reference data S0 and experimental data S1 to estimate the
log-likelihood ratio and reconstruct the test statistics t(S1) for the experimental data.

• The model is re-trained on reference data S0 against Ntoy ≈ 300 toy anomaly-free samples
following the SM, to reconstruct the distribution of the test statistics under the null hypothesis
p(t|0) and compute the p-value pS1

.
• We further rewrite the p-value as a Z-score, Zobs(S1) = Φ−1(1− pS1

), where Φ−1 is the
quantile of a Normal distribution with zero mean and unit variance.

Hyper-parameters The algorithm has three main hyper-parameters: the number of Nyström
centers M , the bandwidth of the Gaussian kernel σ and the regularization parameter λ. The Nyström
method is a low rank approximation which is based on selecting a subset of size M of data points
{x̃1, ..., x̃M} ⊂ {x1, ..., xN } on which the kernels are “centered”. Selecting a small M brings
a lower storage and computational cost but it it could affect the accuracy of the likelihood ratio
estimation. In practice, we find that a typical value that works well is of the order of the number of
expected events, M = O(N(0)).3 By varying the parameters σ and λmore or less complex functions
can be selected. In particular for large λ and/or σ the model simplifies and tends to become linear
while for small values it tends to fit the data. Concretely, the effect of σ is more aggressive and we
find that a good strategy is to tune σ first and then λ. To select σ, we search for values that return
flexible models while avoiding overfitting the noise in the samples. We then look at the distribution
of the pairwise (euclidean) distance of the examples in the dataset as a proxy for the relevant scales in
the data and we then select a value at least as large as the median, typically around the 75th percentile.
Once σ is chosen, we take λ as small as possible while maintaining a stable algorithm. We train
the model up to a maximum of 106 iterations while imposing a threshold on the variation of the
loss function of ∆L = 10−7 below which training is halted. These are both extremely conservative
criteria as the number of iterations required for convergence is O(10) and reducing ∆L does not
bring any observable benefit.
Note that, to preserve model-independence, any step required for hyper-parameter tuning is performed
the reference data only. We find this strategy to be robust and reproducible as “reasonable” variations
in the hyper-parameters do not significantly affect the final results.

3 Experiments and discussion

Datasets We report the results of the algorithm on three simulated datasets of increasing dimension-
ality: DIMUON (d=5), SUSY (d=9) and HIGGS (d=21). They are all characterised by two classes:

2Note that using Eq.(4) can be seen as minimizing the sum of false positives and false negatives rather than
the overall error.

3There are studies (see [20, 21]) showing that optimal statistical bounds can be achieved with M = O(
√
N ).
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SM only reference data and NP data (SM background combined with a NP component). In the first
dataset we test both a resonant and a non-resonant signal with varying mass and coupling constant.

The ratio between the size of the reference sample and the number of expected background events is
fixed as N0/N(0) = 5 for all datasets. We then considered N(0) = 2× 105 for the DIMUON case
andN(0) = 106 for SUSY and HIGGS. The simulated NP data are also characterized by the expected
number of signal events N(S), so that the actual number of events isN1 ∼ Pois(N(0) +N(S)). We
repeat our experiments at different values of the ratio N(S)/N(0) between the expected number of
signal and background events to test the performance of the model. We refer the reader to [2, 22] for
additional details about the data. Being simulated datasets, we also reconstruct the distribution of the
test statistics under the alternative hypothesis p(t|1) by training the model on different toy samples
(Ntoy ≈ 100) following the NP distribution.

We report the median observed significance Zobs against an estimated ideal significance Ẑid computed
with traditional model-dependent techniques, e.g., cut-and-count analyses. We also show that the
distribution p(t|0) follows closely a χ2 distribution with a number of degrees of freedom that depends
on the complexity of the underlying model in agreement with Wilk’s theorem [23], see Figure 1. We
use this fact to obtain an estimate of the p-value but we also report examples of the maximum reach
of the reconstructed distributions.
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Figure 1: Examples of distributions of the test statistics under the null and alternative hypotheses.
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Figure 2: Median observed significance against estimated ideal significance.

Results In Figure 1 we show typical examples of reconstructed distributions of the test statistics
under both hypotheses for all datasets. The corresponding χ2 distribution is determined using a
Kolmogorov-Smirnof test. In Figure 2 we show the median observed Z-score for the three datasets
for different amounts of signal injection corresponding to different values of the ideal significance.
The error bars represent the 16th and 84th percentile. We can observe that in the DIMUON case, the
observe significance seems to depend mostly on the ideal significance and weakly on the nature of
the signal. We also compare our results with the ones obtainable with the NN-based model presented
in [1, 2] and trained according the the authors’ guidelines. The NN results regarding the DIMUON
dataset can be found in [2]. Overall, we can see that the two models return quite comparable results.
However, in Table 1 we show the dramatic difference in training times between the two models.
Note that in order to reconstruct the distribution of t under the null hypothesis, a large number of
training rounds are typically required. For the NN implementation this means that one cannot rely
on sequential experiments performed on single GPU systems, while this is not a problem for our
algorithm. The main limiting factor seems to be the number dimensions, as the ratio between the the
observed significance and estimated ideal one deteriorates with the number of features. Nonetheless,
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this limitation is not associated with the specific model since it is also observed in the NN case. In
our experiments, we also observed that the median observed significance quickly approaches Ẑid

when performing appropriate cuts on the input features, such as removing the Z boson peak from the
DIMUON dataset. At the same time we also noticed that using additional engineered features with
higher discriminative power does not improve the results in a considerable way.

Remarks: Experiments were performed on a single GPU system with a NVIDIA Titan Xp (12 GB
RAM). We want to thank the authors of [2] for giving us access to their dataset for our tests.

Table 1: Average training times per single run with standard deviations.

Model DIMUON SUSY HIGGS

Falkon (53.8 ± 1.9) s (44.8 ± 1.5) s (88.7 ± 2.2) s
Neural Net (4.23 ± 0.73) h (73.1 ± 10) h (112 ± 9) h

Discussion We discussed a new approach for model-independent new physics searches in particle
physics. The main focus of our work is on the efficiency of the proposed model which is based
on a re-weighted version of kernel logistic regression with Gaussian kernels and L2 regularization.
The core machine learning algorithm has been developed to extend the use of kernel methods to
large scale problems by leveraging different algorithmic ideas such as random projections and taking
full advantage of GPU architectures. We obtain results on simulated realistic data that rival similar
NN-based implementations while drastically reducing training times and the required computational
resources. Nonetheless, we see different directions for improving our proposal. These include:
a treatment of systematic uncertainties associated with the imperfect knowledge of the reference
model; a more principled procedure for hyper-parameter tuning; alternative approaches to estimate
the distribution of the test statistics under the null hypothesis; testing the algorithm on real data. On
the algorithmic side, possible developments include: different strategies for the selection of Nyström
centers; taking advantage of NN architectures as feature extractors in conjunction with the efficiency
of kernel methods.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Sections 3.
(c) Did you discuss any potential negative societal impacts of your work? [No] We use a

standard statistical analysis and our applications are on high energy physics data only.
The main focus of our paper is on the efficiency of the specific implementation we
propose.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In Section 2 we
give instructions on the training of the model, the analysis of the results and we include
a link to the repository of the library we use.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We reported standard devations and percentiles to show
the range of the reconstructed distributions.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the end of Section 2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We refer to the

original paper where the solver we use (Falkon) was introduced.
(b) Did you mention the license of the assets? [Yes] We mention that the library we use is

public.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We perform a standard statistical analysis which is easily reproducible with standard
Python libraries. The training of the model can be easily performed with the library we
refer to in the text.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The data we are using/curating does not contain
personally identifiable information or offensive content

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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