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Abstract

Ordinary Differential Equation Variational Auto-Encoder (ODE2VAE) is a deep
latent variable model that aims to learn complex distributions over high-dimensional
sequential data and their low-dimensional representations in a hierarchical latent
space. The hierarchical organization of the latent space embeds a physics-guided
inductive bias in the model. In this paper, we analyze the latent representations
inferred by the ODE2VAE model over three different physical motion datasets:
bouncing balls, projectile motion, and simple pendulum. We show that the model is
able to learn meaningful latent representations to an extent without any supervision.

1 Introduction

ODE2VAE is a dynamic generative model that operates in continuous-time [1]. It aims to learn
complex latent trajectories of sequential data by combining VAEs, Neural ODEs, and Bayesian
neural networks (BNNs) [2]. The ODE2VAE model infers the latent trajectories by using coupled
latent ODEs which induce a physics-motivated inductive bias into the model. It was shown that the
ODE2VAE model exceeds the performance of the compared models in the task of extrapolating future
time steps of sequential datasets [1]. However, the latent representations learned by the model are not
explored. Given its physics-motivated inductive bias, the ODE2VAE model may learn meaningful
latent representations behaving according to approximate physical generating factors of a physical
system. Our first contribution is investigating ODE2VAE’s performance on modeling the three motion
datasets: bouncing balls, projectile motion, and simple pendulum. Moreover, we uncover the effects
of the model’s by analyzing the model’s dynamical latent representations and their uncertainties.

2 Methods

ODE2VAE proposes a second order latent ODE model to infer latent representations of high-
dimensional sequential data such as videos [1]. The ODE2VAE model uses VAEs for encoding the
input frames and coupled first order latent ODEs for modeling the latent trajectories. This approach
creates an hierarchical latent space. Therefore, the model’s latent space can be decomposed into
latent position st ∈ Ra, velocity vt ∈ Ra, and acceleration trajectories fW ∈ Ra as the following:[
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dτ, ṡt = vt v̇t = fW (st,vt) (2)
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Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



where x0:N denotes the sequential input data, qenc denotes approximate posterior distribution for the
initial latent state and is parameterized by CNNs, and the acceleration field fW is parameterized by
a BNN with weights W . The latent state zt corresponds to the tuple [st,vt]. The hierarchy among
the trajectories imposes the physics-guided inductive bias of the model, since the trajectories model
an arbitrary equation of motion in the latent space by using latent ODEs. In other words, the latent
velocity trajectory drives the dynamics of the position trajectory and the latent acceleration field
drives the latent velocity trajectory. Therefore, one can expect the model to learn decomposed latent
trajectories that are aligned with the real dynamics (i.e. observed position, velocity, acceleration) of
the input sequence.

The ODE2VAE model is optimized by using variational inference. The ELBO term, which is the
lower bound of the marginal log-likelihood, can be written as [1]:

log p(X) ≥ −DKL[q(W, Z | X)||p(W, Z)]︸ ︷︷ ︸
Regularization

+Eq(W,Z|X)[log p(X | W, Z)]︸ ︷︷ ︸
Reconstruction

(3)

+

N∑
i=1

Eqenc(z0|X)

[
Eqode(W,zi|X,z0)

[
− log

qode (zi | z0,W)

p (zi)
+ log p (xi | zi)

]]
︸ ︷︷ ︸

dynamic loss

(4)

where X and Z denote the sequential data x0:N and sequence of latent variables z0:N respectively.
The amortized approximate posterior distributions over the weights of the BNN q(W) and initial
latent state qenc(z0) follow a multivariate Gaussian distribution. The approximate posterior over
the next latent states qode(zi) is computed using continuous normalizing flow given the initial log
density [3]. The priors p(W), p(z0), and p(z1:N ) are standard multivariate Gaussians.

To investigate the effects of the imposed inductive bias over the decomposed latent space, we
analyze L2 norms of the latent states as they are previously used for explanatory and interpretable
metrics [4, 5]. Due to the model’s inductive bias, the L2 norm of the acceleration field is similar to
the magnitude of the force effecting the dynamics in the latent space. Similarly, the L2 norm of the
velocity latent variable resembles square root of the total kinetic energy of the system.

3 Experiments

3.1 Data and Training

For each dynamical system, we follow the provided implementation for data generation [6]. Our data
consists of sequences of 32× 32× 1 images with pixel values between 0 and 1. For each dataset, the
number of cases are 10000, 500, 500 for training, validation, and test sets. Other details about the
datasets can be found in Appendix A.1. All of the model variants are created by using the official
ODE2VAE implementation and hyperparameters for bouncing balls experiments [1] in Tensorflow
framework [7]. The models are trained with Adam Optimizer [8] with the learning rate of η = 0.001
and the batch size of 32. The amortized inference length is selected as m = 3, which is the input
length. All hyperparameters are chosen according to the baseline work’s setting for bouncing ball
experiments [1]. Our experiments are executed on a single Tesla V100 GPU where each experiment
takes approximately three days. We start the experiments with the minimum possible number of
latent units for the given dataset and increase the dimensionality until the motion is captured. This
approach creates a bottleneck in the latent dimensionality. It forces the model to learn meaningful
latent representations because the ELBO objective can only be maximized by the latent units that are
related with the ground truth generative factors [9].

3.2 Results

The experiment results are evaluated by computing L2 norms of the latent states, mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and negative marginal log-likelihood (NLL). In the
experiments, we use L=10, which is the number of latent states sampled at each time step.
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3.2.1 Bouncing Balls

Bouncing ball motion consists of a moving ball with a constant kinetic energy in a 2D box.
When the ball hits the wall, the wall exerts a force over the ball proportional to the change in
the ball’s momentum. Therefore, the ball has a non-zero acceleration only for the collision mo-
ments. In this experiment, we check if the ODE2VAE model captures latent representations that
are aligned with real dynamics. The baseline model with the latent dimensionality a = 2 can-
not capture the dynamics of the motion of the single bouncing ball after it is trained for 250
epochs. We increase the latent dimensionality to a = 3 and a = 12 and train the models
for 250 epochs. Both of the models have captured the dynamics of the single bouncing ball.

Table 1: Performance metrics of the selected model on the single bouncing ball.
Each metric is computed by using 10 samples per test case.

Metrics

Model MSE PSNR NLL

ODE2VAE, a = 3 0.0027±0.0032 28.2601±4.6264 42.5142

In Table 1, we
only report the
metrics for model
with a = 3.
The model is able
to capture physi-
cally meaningful
latent representations. We present an example case in Figure 1(a). When the ball hits the wall, there
is a spike in the norm of the latent acceleration. It can be seen that the standard deviation of the
norm of the acceleration field also increases during the collision. This indicates the fact that the
output of the BNN has a greater uncertainty during the collision. The norm of the latent velocity is
not changed during the motion in the example case, which suggests the fact that the latent velocity
preserves its norm, but changes the direction during the collisions (see Figure 5). Figures 1(b) and
1(c) summarize the statistics for the norm of the acceleration field and latent velocity over all test
cases with a breakdown for the time steps with and without collision. Figure 1(b) shows that the
model generates an acceleration field with a greater magnitude during the collisions. When there
no collision, the model generates an acceleration field with a smaller norm compared to the mean
magnitude at the collision time points. Figure 1(c) shows that the model has increased the magnitude
of the velocity latent without collision. Its magnitude decreases during the collision moments, which
is unexpected since the ball’s stationary moments during the collisions are ignored in the dataset.
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Figure 1: (a) Example test case reconstructed by the ODE2VAE model with a = 3 and L2 norms of
the latent states. Mean and standard deviation values for the L2-norm of the latent (b) acceleration
and (c) velocity of the bouncing ball dataset.

3.2.2 Projectile Motion

Projectile motion describes an object’s motion due its initial velocity and the gravitational force.
Our sequences captures a ball’s motion which is projected into the air. The ball is under a constant
gravitational acceleration during its motion. It is expected to accelerate as it approaches to the floor.
As it hits the ground, it loses a fraction of its total energy and bounces back. Therefore, the ball
is under constant acceleration except the collision times. Also, it has the minimum kinetic energy
when it is at the maximum height. We check if the ODE2VAE model learns physically meaningful
representation due to its hierarchical latent space. We find out that the ODE2VAE baseline model
could not capture the projectile motion dynamics with a = 2, 3, 5, 7 after it is trained for 300 epochs
and converged. Therefore, we increased the number of latent units to 9. Although the model has
increased predictive performance with a = 9, it is not fully able to capture latent dynamics that
resemble the real projectile motion.
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Table 2: Performance metrics of the selected model on the projectile motion
dataset. Each metric is computed by using 10 samples per test case.

Metrics

Model MSE PSNR NLL

ODE2VAE, a = 9 0.0016±0.0016 30.5322±5.1913 27.8267

We present an ex-
ample case in Fig-
ure 2(a). In
this dataset, colli-
sions between the
ball and floor is
assumed to take
0.1 second. The
frames are separated by 0.1 second. One of the challenges about the projectile motion is that the
model needs to capture a constant gravitational acceleration present at all times as well as the instan-
taneous acceleration due to the collision. The results show that the model is not able to generate a
constant acceleration field for the moments without collision. On the other hand, there is a slight
increment in the total kinetic energy when the ball is closer to the ground. In Figures 2(b) and 2(c), we
present the norm of the acceleration and velocity latents at the time steps with and without collision.
Although the true acceleration field is constant (except for the collision moments) due to the constant
free-fall acceleration, the model is not able to learn a fixed acceleration field among the different test
cases (see Figure 2(b)). We omit to comment on the norm of the latent velocity since the ground truth
velocities are not the same in the test set. We should note that another reason behind model’s inability
to capture projectile motion’s dynamics may be time resolution of the input sequences. Since the
time step between frames have the same length with the time spent during collisions, the model may
tend to overfit at the collision moments. This behaviour can be analyzed by the use of an input data
with higher temporal resolution.
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Figure 2: (a) Example test case reconstructed by the ODE2VAE model with a = 9 and L2 norms of
the latent states. Mean and standard deviation values for the L2-norm of the latent (b) acceleration
and (c) velocity of the projectile motion dataset.

3.2.3 Simple Pendulum

Simple pendulum motion consists of an moving mass which is suspended from a rod that is pivoted. It
can simulated by small angle approximation and the motion becomes periodic and it can simulated by
small angle approximation, when the air friction is neglected. During the motion, the object is under
the effect of uniform gravitational field. It has zero kinetic energy when its at the highest point of
swing. It reaches maximum kinetic energy at its equilibrium position. The object also effected by the
force applied by the rod; the magnitude of the restoring force over the object increases as it approaches
its highest point of swing. Since the motion can be described with a second-order differential equation,
we can check if the ODE2VAE model learn meaningful latent representations. We train the ODE2VAE
model with a = 2 and a = 6 on the simple pendulum dataset for 300 epochs. Both models have
captured the pendulum motion; there is not a considerable improvement between the two models.

Table 3: Performance metrics of the selected model on the simple pendulum
dataset. Each metric is computed by using 10 samples per test case.

Metrics

Model MSE PSNR NLL

ODE2VAE, a = 2 0.0007±0.0006 33.6325±4.5241 26.5609

In Table 3, we
only report the
model’s per-
formance with
a = 2. Since the
simple pendulum
motion is a
periodic motion, it may be easier to capture compared to the other motion types. The model is able to
capture physically meaningful latent representations. We provide an example case in Figure 3(a).
The model generates an increased norm of the latent acceleration when the object reaches its highest
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point during its motion and the magnitude of the acceleration is minimized when the object passes
through the equilibrium point. Another observation is that the BNN has the decreased uncertainty
over the magnitude of the acceleration field when the object passes through the equilibrium point.
Additionally, the norm of the latent velocity reaches its peak when the ball passes the equilibrium
position and decreases when the object reaches its highest points, which are the highlighted time
points. In Figure 3(b), we provide the statistics for the norm of the latent acceleration over the test
cases with a breakdown for the moments with and without direction change. The figure shows that
the model generates an acceleration field with a greater magnitude when the object reaches its highest
point. Moreover, Figure 3(c) shows that the latent velocities of the test cases have a reduced norm
at the moments of direction change. Although the model cannot generate latent velocity variables
with magnitude zero at the moment of direction change, it captures a decreasing trend, which is still
physically plausible.
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Figure 3: (a) Example test case reconstructed by the ODE2VAE model with a = 2 and L2 norms of
the latent states. Mean and standard deviation values for the L2-norm of the latent (b) acceleration
and (c) velocity of the pendulum dataset.

4 Conclusion and Future Work

Our experiments showed that the ODE2VAE model is able to learn physically meaningful latent
representations in an unsupervised setting. We observed that the model can learn physically plausible
dynamic latent representations for the bouncing ball and simple pendulum datasets. Additionally, our
results empirically show that the uncertainty over the magnitude of the acceleration field increased
during rare events and non-linear motions such as collisions. Our work has limitations that stem
from convergence issues during the model training and limited number of metrics for measuring
the interpretability of the latent representations in an unsupervised setting. Therefore, our future
work may focus on building a stable version of ODE2VAE and increasing the interpretability of the
latent representations through using arbitarary Lagrangians or Hamiltonians [10, 11], and learning
disentangled latent representations with weak supervision [12].

Broader Impact

Embedding the right inductive bias in the machine learning model is a key step for increasing
generalization capacity of the network and its interpretability [13, 14]. This project will have
broad impact in building interpretable latent representations and quantifying their robustness for
dynamical systems with sequential data. As there are task specific inductive biases that increase model
generalization and interpretability, we can also design metrics that will increase the interpretability of
the latent representations and quantify the model’s robustness. Although the data and metrics used
in the experiments are from well-known physical motion datasets, they can be extended for other
domains such as chemistry, biology, and drug discovery. Therefore, this approach may provide deep
latent variable models which give insight to experts from various domains.
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A Appendix

A.1 Data Generation

A.1.1 Bouncing Balls

By using the provided implementation [6], we re-implemented the bouncing balls dataset with
multiple variants. The dataset captures dynamics of a single ball in a 2D box. There is no friction
in the motion and all collisions are elastic. The 2D box has a side length of 10.0m. The radius and
mass of the ball are fixed, at 1.2m and 1.0 kg, respectively. The ball has a velocity that is randomly
sampled from a standard normal distribution. The total kinetic energy is constant over each sequence.
The frames in the sequences are separated by one second, and the ball’s motion is simulated with 0.5
second resolution. In Figure 4(a), we present a figure of the bouncing ball dataset.

A.1.2 Projectile Motion

The projectile motion dataset consists of a ball, which is projected up in a square frame with the side
length of 10.0m. The ball is affected by gravity and collisions during its motion. The ball reaches its
maximum kinetic energy before its first collision with the ground. During the collision it loses some
of its kinetic energy. It has a radius of 1.0m. The initial velocity (m/s) is denoted as v = [vx, vy],
where vx and vy are sampled from a uniform distribution with the ranges [1, 4] and [0, 1]. The initial
position (m) is denoted as h = [hx, hy], where hx is fixed as zero and hy has a uniform distribution
in the range [1, 3]. The coefficient of restitution, which determines the magnitude of the vy after the
ball hits and bounces from the floor, is 0.80. The collision between the ball and floor is assumed to
take 0.1 second. The frames are separated by 0.1 second. Figure 4(b) shows example sequences from
the projectile motion dataset.

A.1.3 Simple Pendulum

A simple pendulum system consists of a point mass, and a pivoted rod with length l, where the mass
is suspended from the rod. The mass of the rod is negligible, and there is no air friction in our case.
In this paper, we only consider pendulum motions with small initial angles. Therefore, it is sufficient
to model simple pendulum motion. The dynamics of the simple pendulum is approximated by using
small angle approximation, sinα ≈ α. The dataset captures the periodic motion of the point mass
around its equilibrium position. During the motion, the gravitational field is uniform. The object
reaches its maximum kinetic energy at its equilibrium position. The magnitude of the restoring force
over the object increases as it approaches its highest point of swing. The side length of the 2D square
box is 10.0m. The radius of point mass is 1.0m. The length of the rod l has a uniform distribution in
the range [3, 6]. The initial angle for freeing the point mass follows a uniform distribution in the range
[π/36, π/9]. The gravitational field has a magnitude of 9.91m/s2. The frames are separated by 0.4
seconds, and the motion is simulated by the analytical solution for the simple pendulum motion. Due
to the different initial angles, the maximum total kinetic energy for each case is different. Figure 4(c)
shows example sequences from the pendulum dataset.

(a) Bouncing ball dataset. (b) Projectile motion dataset. (c) Simple pendulum dataset.

Figure 4: Dataset figures.
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A.2 Additional Results
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Figure 5: Example test case for single bouncing ball with corresponding latent vectors. The figure
explicitly shows the evolution of the latent vectors.
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