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Abstract

Forecasting bushfire spread is an important element in fire prevention and response
efforts. Empirical observations of bushfire spread can be used to estimate fire
response under certain conditions. These observations form rate-of-spread models,
which can be used to generate simulations. We use machine learning to drive
the emulation approach for bushfires and show that emulation has the capacity to
closely reproduce simulated fire-front data. We present a preliminary emulator
approach with the capacity for fast emulation of complex simulations. Large
numbers of predictions can then be generated as part of ensemble estimation
techniques, which provide more robust and reliable forecasts of stochastic systems.

1 Introduction

Bushfires pose a serious threat to communities and natural flora and fauna across wide regions of
Australia, as well as internationally. Simulated fires provide valuable data for first responders to
assess vulnerable areas and the risk of a firefront impacting communities as well as being able
to formulate response strategies for threatening fires. Simulation platforms such as Spark [Miller
et al., 2015] and Phoenix [Tolhurst and Chong, 2010] use various techniques to predict how a fire
front will progress through time. Underpinning such simulations are empirical rate-of-spread (ROS)
calculations. These calculations determine how quickly a fire burns given a fuel source and varying
environmental conditions such as temperature, slope, wind speed and wind direction [Cruz et al.,
2015].

A single simulation instance generates one possible future fire front. To generate uncertainty esti-
mates of a fire reaching a given location requires running ensembles of simulations under various
environmental conditions. Generating large ensembles becomes computationally taxing and may be a
prohibitive barrier to this type of analysis.

Emulation using machine learning is a method that attempts to mimic a slow running and highly
parameterized process model using training examples. We develop an emulator that approximates
a simulated fire front and discuss how surrogate models of this type could be used more efficiently
in the future to characterise a broad range of fire scenarios simulated from varying environmental
setups..

2 Modelling

2.1 Data

We use a data set of 200 simulated fires, generated using the Spark platform under real world
meteorology and land input conditions in Australia. These trials are a subset of SPARK runs
conducted as part of CSIRO’s commercial work in the bushfire space. We aim to closely reproduce the
simulated data using an emulator that requires a fraction of the computational resources. This makes
running large ensembles to explore a broader range of fire scenarios, a more feasible proposition.
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Input data for the simulation consists of a topographical map1, weather data2, and land classification
map3. The resolution of spatial data is 30mx30m for each pixel. Weather station data is polled every
30 minutes.

Key pre-processing steps in our machine learning pipeline include: converting heightmaps to x and y
gradient components using a Sobel edge algorithm; converting wind speed and direction to x and y
components; expressing distances in pixel (30m) units and times in interval (30 minutes) units; and
creating training samples by cropping simulated images to 256× 256 pixel squares, centred about an
active fire source. Cropping is used because the memory requirements for training neural networks
using large images is prohibitive.

2.2 Neural Network Architecture

We approach the emulation of fire spread using a neural network (NN) framework due to their
versatility as well as their success in structuring emulators for other problems [Sekou et al., 2019,
Wang et al., 2019, Allaire et al., 2021, Burge et al., 2020]. The design of the NN should address
some challenging aspects of the input feature and output space, such as image size, speed to generate
outputs and a NN architecture that can cope with a mix of spatio-temporal inputs.

In terms of the size of the images that convey the fire front, each sample is allowed to vary, therefore
accepting inputs to be of varying size. Fully convolutional networks are able to handle a variable
input array size, so this is a natural choice.

A focus for emulation is speed and to ensure that the overall complexity of the network is minimized
while still maintaining performance [Thiagarajan et al., 2020, Kasim et al., 2020]. Our approach is
to downscale the spatial data (topography and land/fuel type) through strided convolution operators.
This smaller set of latent features are then updated by each time interval until a final state is reached.
This is far less computationally expensive than applying updates directly to a full sized array. The
final latent state is then upscaled by transposed strided convolution operators where a final fire shape
is output.

Finally, incorporating weather data is itself difficult since it more closely resembles time series data
than image data. We could simply treat each data point as a uniform array of values and approach the
problem using standard convolutional techniques. Undesirably, this greatly increases the number of
convolutional operations that must be performed, which taxes memory and processing power. Instead,
we transform the latent terrain layers so their depth dimension matches that of the weather input.
By multiplication we transform these layers into an input with the correct spatial dimensions. This
process is repeated for each new weather input until the final fire shape is produced.

Figure 1 shows a schematic for the neural network we deploy. A sample input image size of 256×256
pixels is used as a demonstration. The model uses a total of 106,532 trainable parameters. Note that
there are only 21,248 trainable parameters in the residual block. The final model output layer is a
spatial layer with values corresponding to arrival times of the fire.

2.3 Training the Neural Network

As the size of the images supplied for each fire simulation vary, some being quite large (up to 2048
pixels on an edge), we take the approach of cropping the images to 256 by 256 pixels in order to
reduce the memory requirements needed for training. The cropping is centered around an actively
burning region on the perimeter, and random rotation and flipping is performed.

The loss function, L of an image, P is represented as

L(P) = log10

(
MSEo + τ

MSEp + τ

)

1Topography data sets derived from Geoscience Australia SRTM-derived 1 Second Digital Elevation Models
Version 1.0. Data is publicly available under Creative Commons Attribution 4.0 International Licence.

2Meteorological time series data sets derived from Bureau of Meteorology automated weather station data .
3Land classification data sets derived from Department of Agriculture and Water Resources (ABARES) Land

Use of Australia 2010-11 data set. Data is publicly available under Creative Commons Attribution 3.0 Australia
Licence.

2



where MSEo = 1
n

∑n
i=1(y

(o)
i − yi)2, MSEp = 1

n

∑n
i=1(y

(p)
i − yi)2 and y(o)i is the initial observed

fire arrival time at the i-th pixel, yi is the target future arrival time at the i-th pixel, and yi(p) is the
predicted future fire arrival time at the i-th pixel. The term τ is a very small positive number to avoid
asymptotic instability. The loss function is the log ratio of the mean squared error (MSE) of the
initial and final arrival maps over the predicted and final arrival maps. This can be thought of as the
improvement of the emulator over simply "doing nothing". The loss function was chosen since it does
not weight samples with fast fire growth and more strongly than samples with limited fire growth.

The model is implemented using TensorFlow 2.0 and trained for 400 epochs. We used the ADAM
optimizer [Diederik and Ba, 2015] and a batch size of 16. We withhold a test set with a split of 0.2.
This set remains un-cropped.

3 Results

We present the model evaluation metrics in Table 3. There is a close agreement between results in the
training and test sets, indicating that the model is generalising well. An additional benefit of cropping
the training set is that it reduces the chance of over-fitting, and closely resembles principles from
few-shot learning [Wang et al., 2021].

Figure 2 displays predictions for a test sample simulated over a duration of 30 minutes. In this sample
there is overestimation of the fires spread, in which the emulator estimates the fire spreading faster
than the simulation.

Figure 3 displays the fire front for this sample. Between the predicted and comparison (simulated)
perimeters there is a good agreement of general shape. Broad features are in agreement, while intricate
and narrow features present in the comparison perimeter are lost in the prediction. Importantly we
see that the emulated behavior with respect to nonburnable terrain (darkest background shade) is
consistent with the simulation. In particular we note that the fire does not advance North Easterly at
the bend in the river on the left flank of the fire.
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Figure 1: The emulator architecture. Red blocks represent strided convolutional (or transposed convolutional)
layers with kernel size 4 and stride size 2. Orange blocks represent convolutional layers with kernel size 3 and
stride size 1. The fire shape and terrain inputs are 2D arrays. In training we use 256×256 pixels, though the
model is fully convectional and can handle arbitrarily sized arrays. Weather inputs are a set of scalar values
(eg. temperature, wind speed). These values are updated in successive steps as part of the input to the recurrent
component of the model. The state of this recurrent cell are the latent fire shape features. Once the final weather
input is processed upscaling is used to restore the final predicted fire shape.
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Figure 2: The difference between predicted and com-
parison (simulated) fire arrival times for a single interval
(30 minutes) on a test sample. The interval is normalised
so 0 represents the beginning and 1 the final arrival time.
Positive values (purple) represent false-positives and
negative values (orange) represent false-negatives.

Figure 3: The initial fire front (dotted, black)
shown against the predicted fire perimeter (solid,
red) and the comparison fire perimeter (dashed,
blue) for the same sample in Figure 2. These
perimeters are overlaid on the various land
classes used by the model, shown in gray-scale.

Set Loss Jaccard Score Dice Score

training -0.45 0.68 0.81
test -0.49 0.67 0.79

Table 1: Model loss and evaluation metrics. Aggregate over all samples.

The recurrent component of our neural network allows for a series of intervals to build out a longer
duration prediction. This is likely to be a better gauge of the emulator’s performance and is an
extension that we are currently exploring.

In terms of bench-marking speed and memory requirements against conventional simulations we are
still awaiting a more sophisticated analysis. Preliminary trials show that there is a speedup of around
a factor of four. This may improve as the model architecture is refined, and the implementation is
improved.

4 Conclusion

In this paper we have shown how a neural net can be constructed to efficiently emulate a spatio-
temporal spread model. In this case we specifically focus on the emulation of fire front spread. While
this work represents a preliminary investigation we show a respectable match between emulated and
simulated results. If development of the emulator leads to a much faster representation of the physical
process then this opens up a number of possible applications.

Of immediate interest is the use of emulators in ensemble forecasting and the generation of confidence
intervals for fire front predictions. This approach allows the estimation of the likelihood of a fire
reaching an area, rather than simply calculating the most likely fire front. Another area of interest is
transfer learning to fine tune the model with the use of real fire examples. This could in principle
lead to a neural network model that is more accurate than the original model and simulations that the
emulator was developed on.

Broader Impact

In this paper we propose an architecture for emulating fire simulations from SPARK. The downscaling
layers act to compress the data. This allows for a speedup over simulated fires which act on the full
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uncompressed topographical scale. The reduced memory requirements may also be useful since large
scale SPARK simulations are often constrained by memory.

We have shown a modest reduction in processing time between our emulations and SPARK simula-
tions. It is likely that these gains will improve as the code and architecture are further refined.

While we have demonstrated that emulation shows promise as a methodology for mimicking fire
spread, this geo-spatial approach may have impact in a variety of similar problem spaces. Areas such
as disease spread, pollutant spread, and pest spread all represent similar problem scopes where this
emulation approach may be viable.
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